Solution to Assignment 4
ECE 6601

1. \[P_e = P_0 \cdot P_{10} + P_1 \cdot P_{01} \quad \text{(eqn 4.35)} \]
\[P_e = P_0 \cdot \int_{-\infty}^{\infty} f_y(y10) \, dy + P_1 \cdot \int_{-\infty}^{\infty} f_y(y11) \, dy \quad \text{(eqns 4.28, 4.33)} \]
\[\frac{\partial P_e}{\partial z} = P_0 \left(-f_y(210) \right) + P_1 \cdot f_y(211) = 0 \]
\[\Rightarrow \frac{f_y(211)}{f_y(210)} = \frac{P_0}{P_1} \]

2. A sinc or a raised cosine function has a limited bandwidth; the NRZ pulse has an infinite bandwidth. Although small, the NRZ pulse creates some interference to adjacent bands. The NRZ pulse satisfies \[\frac{1}{2} P(f - \pi P_b) = T_b. \]

3. The pulse already has zero-phase, which could be considered a type of linear phase. In general, to have a linear phase for the pulse \(p(t) \), you delay it by some time \(t_d \)
\[p(t-t_d) = 2\pi C (2W(t-t_d)) \left(\frac{\cos(2\pi W(t-t_d))}{1 + 16 W^2 (t-t_d)^2} \right) \]
which would make \(P(f) \) flat. Therefore, the phase of the delayed pulse would be simply \(-2\pi ft_d\), which is linear in \(f \). The raised cosine function is infinite in length (in the time domain); therefore, it is truncated in practice. Hopefully, the truncation is designed to have a minimum impact on the frequency properties (Magnitude and Phase) and time properties (such as zero ISI). Moreover, this truncated pulse is delayed to make the system causal (from DSP, \(p(t) = 0 \) for \(t < 0 \))
4.a) Binary sequence \{b_k\} = 0 0 1 1 0 1 0 0 1
Two-level seq \{a_k\} = +1 -1 +1 -1 +1 -1 -1 +1
Doubly-binary coder output \{c_k\} = 0 0 2 0 0 0 0 -2 0
Estimate of \{a_k\}: \hat{a}_k = +1 -1 -1 -1 +1 -1 -1 +1
Receiver output \{\hat{b}_k\} = 0 0 1 0 1 0 0 1
The \(1\) is arbitrary, but has to be consistent.

b) \{c_k\} = 0 0 0 2 0 0 0 -2 0
\{\hat{a}_k\} = +1 -1 +1 -1 -1 +1 -1 +1
\{\hat{b}_k\} = 0 1 0 1 0 1 0 1
These estimates can be either +1 or -1.

5.a) \{\hat{b}_k\} = 0 0 1 1 0 1 0 0 1
\{\hat{d}_k\} = 1 -1 1 0 1 1 0 0 1
\{\hat{a}_k\} = +1 +1 -1 +1 +1 -1 -1 -1 +1
\{\hat{c}_k\} = 2 2 0 0 2 0 -2 -2 0
\{\hat{b}_k\} = 0 0 1 1 0 1 0 0 1
(4.76)
If \(|c_k| < 1\) \(\Rightarrow \hat{b}_k = 1\)
If \(|c_k| > 1\) \(\Rightarrow \hat{b}_k = 0\)

6) \{c_k\} = 2 0 0 0 2 0 -2 -2 0
\{\hat{b}_k\} = 0 1 1 1 0 1 0 0