1) Consider the random process

\[X(t) = A \cos(2\pi f_c t + \Theta), \quad -\infty \leq t \leq \infty \]

where \(A \) and \(f_c \) are constants and \(\Theta \) has the probability density function

\[f_\Theta(\theta) = \begin{cases} \frac{2}{\pi}, & 0 \leq \theta \leq \frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases} \]

4 a) Find the mean and variance of this random process.

4 b) Obtain its autocorrelation function.

\[\frac{2A}{\pi} \left[\cos(2\pi f_c t) - \sin(2\pi f_c t) \right] \]

2 c) Is the process wide sense stationary? Strictly stationary?

5 a) \[\mu_X(t) = E \left[A \cdot \cos(2\pi f_c t + \Theta) \right] = \int_{-\pi/2}^{\pi/2} A \cdot \cos(2\pi f_c t + \Theta) \frac{2}{\pi} \, d\Theta \]

\[\mu_X(t) = \frac{2A}{\pi} \sin(2\pi f_c t + \Theta) \bigg|_{-\pi/2}^{\pi/2} = \frac{2A}{\pi} \left[\sin(2\pi f_c t + \pi/2) - \sin(2\pi f_c t) \right] \]

\[\sigma_X^2(t) = E[(X(t) - \mu_X(t))^2] = \Phi_{XX}(0) - \mu_X^2(t) \]

\[\sigma_X^2(t) = \frac{A^2}{2} - \frac{A^2}{\pi} \sin(4\pi f_c t) - \frac{4A^2}{\pi^2} \left[\cos(2\pi f_c t) - \sin(2\pi f_c t) \right]^2 \]

\[= \frac{A^2}{2} - \frac{A^2}{\pi} \sin(4\pi f_c t) - \frac{4A^2}{\pi^2} \left[1 - 2\cos(2\pi f_c t) \cdot \sin(2\pi f_c t) \right] \]

\[= \frac{A^2}{2} - \frac{4A^2}{\pi^2} + \frac{4A^2}{\pi^2} \sin(4\pi f_c t) \]

6 b) \[E[X(t)X(t+\tau)] = E[A \cdot \cos(2\pi f_c t + \Theta) \cdot A \cdot \cos(2\pi f_c t + \Theta)] \]

\[= \frac{A^2}{2} E \left[\cos(2\pi f_c \tau) + \cos(4\pi f_c t + 2\pi f_c \tau + 2\Theta) \right] \]

\[= \frac{A^2}{2} \cos(2\pi f_c \tau) + \frac{A^2}{2} \int_{-\pi/2}^{\pi/2} \cos(4\pi f_c t + 2\pi f_c \tau + 2\Theta) \frac{2}{\pi} \, d\Theta \]

\[= \frac{A^2}{2} \cos(2\pi f_c \tau) + \frac{A^2}{\pi} \cdot \frac{2}{2} \cdot \sin(4\pi f_c t + 2\pi f_c \tau + 2\Theta) \bigg|_{-\pi/2}^{\pi/2} \]

\[\Phi_{XX}(\tau) = \frac{A^2}{2} \cos(2\pi f_c \tau) - \frac{A^2}{\pi} \sin(4\pi f_c t + 2\pi f_c \tau) \]

C) The process is not W.S.S. because \(\mu_X(t) \) is a function of time; therefore, it is not strict sense stationary either.
2) The power spectral density of a signal is shown in the figure below.

3 a) Find the total power in the signal.

3 b) Find the amount of power contained in the frequency range 5 to 10 kHz.

4 c) Suppose the signal is applied to an ideal low pass filter with a bandwidth of 5 kHz. Find the power spectral density at the filter output and the total power in the output signal.

\[S_x(f) \]

\[10^{-6} f^2 \text{ watts/Hz} \]

\[-10 \text{ kHz} \]

\[10 \text{ kHz} \]

\[f \]

\[8) \text{ Total Power} = \int_{-\infty}^{\infty} S_x(f) \, df = 2 \int_{0}^{10 \text{ kHz}} 10^{-6} f^2 \, df = \frac{2 \times 10^{-6}}{3} \left(\frac{10^6}{3} \right)^{\frac{3}{2}} = \frac{2 \times 10^{-6}}{3} \left(\frac{1}{3} \right)^{\frac{3}{2}} = 6.66 \times 10^{-5} \text{ watts} \]

\[6) \text{ Power in the 5 to 10 kHz range} = \int_{-5 \text{ kHz}}^{5 \text{ kHz}} S_x(f) \, df + \int_{10 \text{ kHz}}^{10 \text{ kHz}} S_x(f) \, df \\
= 2 \int_{5 \text{ kHz}}^{10 \text{ kHz}} 10^{-6} f^2 \, df = \frac{2}{3} \times 10^6 \left(\frac{10^6}{3} \right)^{\frac{3}{2}} = \frac{2}{3} \left[10^6 - (5^6) \right] = 5.833 \text{ watts} \]

\[S_y(f) \]

\[10^{-6} f^2 \]

\[-5 \text{ kHz} \]

\[5 \text{ kHz} \]

\[\text{Total Power of } Y = \int_{-5 \text{ kHz}}^{5 \text{ kHz}} 10^{-6} f^2 \, df = \text{Result 6) - Result 8) } \]

\[= 8.333 \times 10^{-6} \text{ watts} \]

3
3) A matched filter is described by the figure below

5 a) Find the impulse response of the matched filter.

5 b) Find the pulse shape to which this filter is matched.

\[h_{mf}(t) = [\delta(t) - \delta(t-T)] \ast \mathcal{F}^{-1}\left\{ \frac{1}{j2\pi f} \right\} \]

\[= [\delta(t) - \delta(t-T)] \ast \left\{ \frac{1}{2} \text{sgn}(t) \right\} \]

\[= \frac{1}{2} \text{sgn}(t) - \frac{1}{2} \text{sgn}(t-T) \]

\[= \begin{array}{c}
\text{rect} \left(\frac{t}{T} \right) \end{array} \]

6) pulse it is matched to is \(\text{rect} \left(\frac{T-t-T/2}{T} \right) = \text{rect} \left(\frac{T/2-t}{T} \right) \), same as \(\text{rect} \left(\frac{t-T/2}{T} \right) \)

\[\text{inverted and shifted by T} \]