ECE6604 SUMMARY REVIEW

1. Introduction
 a. Frequency reuse and the cellular concept
 b. Path loss
 c. Co-channel interference
 d. Link budget
 e. Interference margin, shadow margin, handoff gain
 f. Coverage and capacity

2. Flat fading
 a. Propagation mechanism
 b. Envelope distribution
 i. Rayleigh fading
 ii. Rician fading
 iii. Nakagami fading
 c. Received envelope autocorrelation
 d. Doppler spectrum
 e. Isotropic and non-isotropic scattering
 f. Space-time correlation function
 i. At the mobile station
 ii. At the base station
 g. Level crossing rates and fade durations

3. Wideband channel models
 a. Propagation mechanism
 b. Transmission functions
 c. Statistical correlation functions
 d. Wide sense stationary uncorrelated scattering (WSSUS) channels
 e. Power delay profiles

4. Mobile-to-mobile channels

5. MIMO Channels
 i. Kronecker Model
 ii. Weichselberger Model

6. Fading simulators
 a. IIR Filtered white noise
 b. Sum-of-sinusoids
 i. Clarke’s model
 ii. Jakes’ Method
 1. Auto- and cross-correlations
 iii. Improved deterministic and statistical model
 c. COST207 and COST 259 models
 d. Baud-spaced channel models
7. Path Loss Models
 a. Okumura-Hata model
 b. CCIR model
 c. Lee’s Area-to-area model
 d. COST231-Hata model
 e. COST231-Walfish-Ikegami LoS and NLoS model

8. Shadowing and Co-channel interference
 a. Shadow distribution
 b. Shadow simulation
 c. Sums of log-normal random variables
 d. Fenton-Wilkinson approximation
 e. Outage with single and multiple log-normal interferers
 f. Outage with Rician/multiple Rayleigh interferers

9. Modulation Techniques
 a. Linear modulation – QAM, QPSK, π/4-QDPSK
 b. Pulse shaping – root raised cosine and raised cosine.
 c. Multicarrier modulation and OFDM
 d. Continuous phase modulation
 i. Excess phase and tilted phase
 ii. Phase tree, trellis and state diagrams
 iii. CPFSK
 iv. MSK
 v. GMSK
 vi. LGMSK
 e. Orthogonal modulation with Walsh codes
 f. Orthogonal multipulse modulation

10. Power Spectrum of Digitally Modulated Signals
 a. Power spectrum of bandpass signals and their complex envelope
 b. Continuous and discrete spectra
 c. Effects of pulse shaping and data correlation
 d. Power spectrum of single-carrier modulation techniques
 e. Power spectrum of OFDM

11. Digital modulation on flat fading channels
 a. coherent detector
 i. correlation detector
 ii. matched filter detector
 iii. vector representation of received signals
 b. Maximum a posteriori probability receiver
 c. Maximum likelihood receiver
 d. Error probability for slow flat fading channels

12. Multi-antenna techniques
 a. Diversity and diversity combining
 i. Maximal ratio combining
 1. MRC performance
 ii. Selection and switched combining
 1. SC performance
b. Alamouti’s transmit diversity scheme
 i. performance
13. OFDM on AWGN and ISI Channels
 a. OFDM cyclic guard interval and ISI