Week 3

Flat Fading Channels
Envelope Distribution
A typical macrocellular mobile radio environment.
Multipath-Fading Mechanism

Typical mobile-to-mobile radio propagation environment.
Path loss, shadowing, envelope fading.
2-D Model of a typical wave component incident on a mobile station (MS).

- Assuming 2-D propagation, the Doppler shift is \(f_{D,n} = f_m \cos \theta_n \), where \(f_m = v/\lambda_c \) (\(\lambda_c \) is the carrier wavelength, \(v \) is the mobile station velocity).
Consider the transmission of the band-pass signal

\[s(t) = \text{Re}\{\tilde{s}(t)e^{j2\pi f_c t}\} \]

At the receiver antenna, the \(n \)th plane wave arrives at angle \(\theta_n \) and experiences Doppler shift \(f_{D,n} = f_m \cos \theta_n \) and propagation delay \(\tau_n \).

If there are \(N \) propagation paths, the received bandpass signal is

\[r(t) = \text{Re}\left[\sum_{n=1}^{N} C_n e^{j\phi_n - j\frac{2\pi c \tau_n}{\lambda_c} + j2\pi (f_c + f_{D,n})t} \tilde{s}(t - \tau_n) \right] , \]

where \(C_n, \phi_n, f_{D,n} \) and \(\tau_n \) are the amplitude, phase, Doppler shift and time delay, respectively, associated with the \(n \)th propagation path, and \(c \) is the speed of light.

The delay \(\tau_n = d_n/c \) is the propagation delay associated with the \(n \)th propagation path, where \(d_n \) is the length of the path. The path lengths, \(d_n \), will depend on the physical scattering geometry which we have not specified at this point.
Multipath Propagation

- The received bandpass signal $r(t)$ has the form

$$r(t) = \text{Re} \left[\tilde{r}(t) e^{j2\pi f_c t} \right]$$

where the received complex envelope is

$$\tilde{r}(t) = \sum_{n=1}^{N} C_n e^{j\phi_n(t)} \tilde{s}(t - \tau_n)$$

and

$$\phi_n(t) = \phi_n - 2\pi c\tau_n / \lambda_c + 2\pi f_{D,n} t$$

is the time-variant phase associated with the nth propagation path.

- Note that the nth component varies with the Doppler frequency $f_{D,n}$.
- The term $c\tau_n / \lambda_c$ is the propagation distance $c\tau_n$ normalized by the carrier wavelength λ_c. For cellular frequencies (900 MHz), λ_c is on the order of a foot.
- The phase ϕ_n is a random introduced by the nth scatterer and can be assumed to be uniformly distributed on $[-\pi, \pi)$.
- The received phase at any time t, $\phi_n(t)$ is uniformly distributed on $[-\pi, \pi)$.
Flat Fading - impulse response

- The received waveform is given by the convolution

\[\tilde{r}(t) = \int_0^t g(t, \tau) \tilde{s}(t - \tau) d\tau \]

- It follows that the channel can be modeled by a linear time-variant filter having the time-variant impulse response

\[g(t, \tau) = \sum_{n=1}^{N} C_n e^{j\phi_n(t)} \delta(\tau - \tau_n) \]

- If the differential path delays \(\tau_i - \tau_j \) are all very small compared to the modulation symbol period, \(T \), then the \(\tau_n \) can be replaced by the mean delay \(\mu_\tau \) inside the delta function. Note that this approximation is not applied to the channel phases \(\phi_n(t) \), since small changes in \(\tau_n \) result in large changes in \(\phi_n(t) \).

 - The channel impulse response has the approximate form

\[g(t, \tau) = g(t) \delta(\tau - \mu_\tau) , \quad g(t) = \sum_{n=1}^{N} C_n e^{j\phi_n(t)} . \]

 - The received complex envelope is

\[\tilde{r}(t) = g(t) \tilde{s}(t - \mu_\tau) \] (1)

which experiences **fading** due to the time-varying complex channel gain \(g(t) \).
Flat Fading - frequency domain

- By taking Fourier transforms of both sides of (1), the received complex envelope in the frequency domain is

\[\tilde{R}(f) = G(f) \ast \tilde{S}(f)e^{-j2\pi f \mu_r} \]

- Since the channel component \(g(t) \) changes with time, it follows that \(G(f) \) has a finite non-zero width in the frequency domain.

- Due to the convolution operation, the output spectrum \(\tilde{R}(f) \) will be wider than the input spectrum \(\tilde{S}(f) \). This broadening of the transmitted signal spectrum is caused by the channel time variations and is called frequency spreading or Doppler spreading.

 - If the maximum Doppler frequency \(f_m \) is much less than the signal bandwidth \(W_c \), then the Doppler spreading will not distort \(\tilde{S}(f) \).

 - Fortunately, this is often the case.
- The **time-variant channel transfer function** is obtained by taking the Fourier transform of the time-variant channel impulse response \(g(t, \tau) \) with respect to the delay variable \(\tau \), i.e.,

\[
T(t, f) = g(t)e^{-j2\pi f \hat{\tau}}.
\]

- Since the magnitude response is \(|T(t, f)| = |g(t)|\), all frequency components in the received signal are subject to the same time-variant amplitude gain \(|g(t)|\) and phase response \(\angle g(t) = -2\pi f \hat{\tau} \).

- The received signal is said to exhibit **“flat fading,”** because the magnitude of the time-variant channel transfer function \(|T(t, f)|\) is constant (or flat) with respect to frequency variable \(f \).

- The phase response \(\angle g(t) = -2\pi f \hat{\tau} \) is linear in \(f \) meaning that the channel simply delays the input signal and attenuates it.
Invoking the Central Limit Theorem

• Consider the transmission of an unmodulated carrier, $\tilde{s}(t) = 1$.

• For flat fading channels, the received band-pass signal has the quadrature representation

$$r(t) = g_I(t) \cos 2\pi f_c t - g_Q(t) \sin 2\pi f_c t$$

where

$$g_I(t) = \sum_{n=1}^{N} C_n \cos \phi_n(t)$$
$$g_Q(t) = \sum_{n=1}^{N} C_n \sin \phi_n(t)$$

and where $\phi_n(t) = \phi_n - 2\pi c \tau_n / \lambda_c + 2\pi f_{D,n} t$.

• The phases ϕ_n are independent and uniform on the interval $[-\pi, \pi)$, and the path delays τ_n are all independent with $f_c \tau_n \gg 1$. Therefore, the phases $\phi_n(t)$ at any time t can be treated as being independent and uniformly distributed on the interval $[-\pi, \pi)$.

• In the limit $N \to \infty$, the central limit theorem can be invoked and $g_I(t)$ and $g_Q(t)$ can be treated as “Gaussian random processes,” i.e., at any time t, $g_I(t)$ and $g_Q(t)$ are Gaussian random variables.

• The “complex faded envelope” is

$$g(t) = g_I(t) + jg_Q(t)$$
Rayleigh Fading

For some types of scattering environments, \(g_I(t) \) and \(g_Q(t) \) at any time \(t_1 \) are independent identically distributed Gaussian random variables with zero mean and identical variance \(b_0 = E[g_I^2(t_1)] = E[g_Q^2(t_1)] \). This typically occurs in a rich scattering environment where there is no line-of-sight or strong specular component in the received signal (i.e., there is no dominant \(C_n \)) and isotropic antennas are used. Under such conditions, the channel exhibits Rayleigh fading.

The probability density function the envelope \(\alpha = |g(t_1)| = \sqrt{g_I^2(t_1) + g_Q^2(t_1)} \) can be obtained by using a bi-variate transformation of random variables (see Appendix in textbook).

The envelope \(\alpha = |g(t_1)| = \sqrt{g_I^2(t_1) + g_Q^2(t_1)} \) is Rayleigh distributed at any time \(t_1 \), i.e.,

\[
p_\alpha(x) = \frac{x}{b_0} \exp \left\{ -\frac{x^2}{2b_0} \right\} = \frac{2x}{\Omega_p} \exp \left\{ -\frac{x^2}{\Omega_p} \right\}, \quad x \geq 0,
\]

where \(\Omega_p = E[\alpha^2] = E[g_I^2(t_1)] + E[g_Q^2(t_1)] = 2b_0 \) is the average envelope power.

The squared-envelope \(\alpha^2 \) at any time \(t_1 \) has the exponential distribution

\[
p_{\alpha^2}(x) = \frac{1}{\Omega_p} \exp \left\{ -\frac{x}{\Omega_p} \right\}, \quad x \geq 0.
\]
A line-of-sight (LoS) or specular (strong reflected) component arrives at angle θ_0.
• For scattering environments that have a specular or LoS component, \(g_I(t) \) and \(g_Q(t) \) are Gaussian random processes with non-zero means \(m_I(t) \) and \(m_Q(t) \), respectively.

• If we again assume that \(g_I(t_1) \) and \(g_Q(t_1) \) at any time \(t_1 \) are independent random variables with variance \(b_0 = \text{E}[(g_I(t_1) - m_I(t_1))^2] = \text{E}[(g_Q(t_1) - m_Q(t_1))^2] \), then the magnitude of the envelope \(\alpha = |g(t_1)| \) at any time \(t_1 \) has a Rice distribution.

• With Aulin’s Ricean fading model

\[
\begin{align*}
m_I(t) &= \text{E}[g_I(t)] = s \cdot \cos(2\pi f_m \cos(\theta_0) t + \phi_0) \\
m_Q(t) &= \text{E}[g_Q(t)] = s \cdot \sin(2\pi f_m \cos(\theta_0) t + \phi_0)
\end{align*}
\]

where \(f_m \cos(\theta_0) \) and \(\phi_0 \) are the Doppler shift and random phase offset associated with the LoS or specular component, respectively.

• The envelope \(\alpha(t) = |g(t)| = \sqrt{g_I^2(t) + g_Q^2(t)} \) has the Rice distribution

\[
p_\alpha(x) = \frac{x}{b_0} \exp \left\{ -\frac{x^2 + s^2}{2b_0} \right\} I_o \left(\frac{xs}{b_0} \right), \quad x \geq 0
\]

- \(s^2 = m_I(t)^2 + m_Q(t)^2 \) is the specular power.

- \(2b_0 \) is the scatter power.

- The Rice factor, \(K = s^2/2b_0 \), is the ratio of the power in the specular and scatter components.
• The average envelope power is $E[\alpha^2] = \Omega_p = s^2 + 2b_0$ and

$$s^2 = \frac{K\Omega_p}{K + 1}, \quad 2b_0 = \frac{\Omega_p}{K + 1}$$

Hence,

$$p_\alpha(x) = \frac{2x(K + 1)}{\Omega_p} \exp \left\{ -K - \frac{(K + 1)x^2}{\Omega_p} \right\} I_o \left(2x \sqrt{\frac{K(K + 1)}{\Omega_p}} \right), \quad x \geq 0$$

• The squared-envelope $\alpha^2(t)$ has **non-central chi-square distribution** with two degrees of freedom

$$p_{\alpha^2}(x) = \frac{(K + 1)}{\Omega_p} \exp \left\{ -K - \frac{(K + 1)x}{\Omega_p} \right\} I_o \left(2 \sqrt{\frac{K(K + 1)x}{\Omega_p}} \right), \quad x \geq 0$$

• The squared-envelope is important for the performance analysis of digital communication systems because it is proportional to the received signal power and, hence, the received signal-to-noise ratio.
The Rice distribution for several values of K with $\Omega_p = 1$.
Nakagami Fading

- Nakagami fading describes the magnitude of the received complex envelope by the distribution

\[p_\alpha(x) = \frac{2m^m x^{2m-1}}{\Gamma(m) \Omega_p^m} \exp \left\{ -\frac{m x^2}{\Omega_p} \right\} \quad m \geq \frac{1}{2} \]

- When \(m = 1 \), the Nakagami distribution becomes the Rayleigh distribution, when \(m = 1/2 \) it becomes a one-sided Gaussian distribution, and when \(m \to \infty \) the distribution approaches an impulse (no fading).

- The Rice distribution can be closely approximated with a Nakagami distribution by using the following relation between the Rice factor \(K \) and the Nakagami shape factor \(m \)

\[K \approx \sqrt{m^2 - m + m - 1} \]
\[m \approx \frac{(K + 1)^2}{(2K + 1)} \]

- The squared-envelope has the Gamma distribution

\[p_{\alpha^2}(x) = \left(\frac{m}{2\Omega_p} \right)^m \frac{x^{m-1}}{\Gamma(m)} \exp \left\{ -\frac{m x}{2\Omega_p} \right\} \]
The Nakagami pdf for several values of m with $\Omega_p = 1$.
Comparison of the cdf of the squared-envelope with Ricean and Nakagami fading.