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The mobile station is being served by the center base station.
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• At a particular location, let d = (d0, d1, · · · , dNI
) be the vector of distances

between a mobile station and the serving base station BS0 and NI co-channel

base stations BSk, k = 1, . . . , NI.

• The received signal power power at distance d, Ωp (dBm)(d), is a Gaussian

random variable that depends on the distance d through the path loss model,

i.e.,

µΩp (dBm)
(d) = E[Ωp (dBm)(d)] = µΩp (dBm)

(do)− 10β log10(d/do)

• Experiments have verified that co-channel interferers add noncoherently

(power addition) rather than coherently (amplitude addition).

• The C/I a function of the vector d is

Λ(d) =
Ωp(d0)

∑NI
k=1Ωp(dk)

or in decibel units

Λ(d)(dB) = Ωp (dBm)(d0)− 10 log10







NI
∑

k=1
Ωp(dk)







• The outage probability given vector d is

O(d) = Pr

(

Λ(d)(dB) < Λth(dB)

)

• Although the Ωp(dk) are log-normal random variables, the sum
∑NI
k=1Ωp(dk) is

not a log-normal random variable.
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Multiple Log-normal Interferers

• Consider the sum of NI log-normal random variables

I =
NI
∑

k=1
Ωk =

NI
∑

k=1
10Ωk(dBm)/10

where the Ωk (dBm) are independent Gaussian random variables with mean

µΩk (dBm)
and variance σ2

Ωk
.

• The sum I is commonly approximated by another log-normal random vari-

able with appropriately chosen parameters, i.e.,

I =
NI
∑

k=1
10Ωk(dBm)/10 ≈ 10Z(dBm)/10 = Î

where Z(dBm) is a Gaussian random variable with mean µZ (dBm) and variance

σ2
Z.

• The task is to find µZ (dBm) and σ2
Z.
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Fenton-Wilkinson Method

• The mean µZ (dBm) and variance σ2
Z of Z(dBm) are obtained by matching the

first two moments of I and Î.

• Switching from base 10 to base e:

Ωk = 10Ωk (dBm)/10 = eξΩk (dBm) = eΩ̂k

where Ω̂k = ξΩk (dBm) and ξ = (ln 10)/10 = 0.23026.

• Note that

µΩ̂k
= ξµΩk (dBm)

σ2
Ω̂k

= ξ2σ2
Ωk

• The nth moment of the log-normal random variable Ωk can be obtained from

the moment generating function of the Gaussian random variable Ω̂k as

E[Ωn
k ] = E[enΩ̂k ] = e

nµ
Ω̂k

+(1/2)n2σ2
Ω̂

– Here we have assumed identical shadow variances, σ2
Ω̂k

= σ2
Ω̂
, which is a

reasonable assumption.
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• Suppose that Ω̂1, . . . , Ω̂NI
are independent with means µΩ̂1

, . . . , µΩ̂NI

and

identical variances σ2
Ω̂
.

• The appropriate moments of the log-normal approximation are obtained by

equating the means on both sides of

µI = E[I ] =
NI
∑

k=1
E[eΩ̂k ] ≈ E[eẐ ] = E[Î ] = µÎ

where Ẑ = ξZ(dBm).

• This gives






NI
∑

k=1
e
µ
Ω̂k





 e(1/2)σ
2
Ω̂ = eµẐ+(1/2)σ2

Ẑ (1)

• Also equate the variances on both sides of

σ2
I = E[I2]− µ2

I ≈ E[Î2]− µ2
Î = σ2

Î

• This gives






NI
∑

k=1
e
2µ

Ω̂k





 eσ
2
Ω̂(eσ

2
Ω̂ − 1) = e2µẐeσ

2
Ẑ(eσ

2
Ẑ − 1) (2)
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• To obtain µẐ and σ2
Ẑ

1. Square Eq. (1) and divide by Eq. (2) to obtain σ2
Ẑ
.

2. Obtain µẐ from Eq. (1)

• The above procedure yields

σ2
Ẑ = ln











(eσ
2
Ω̂ − 1)

∑NI
k=1 e

2µ
Ω̂k

(

∑NI
k=1 e

µ
Ω̂k

)2 + 1











µẐ =
σ2
Ω̂
− σ2

Ẑ

2
+ ln







NI
∑

k=1
e
µ
Ω̂k







• Given the means µΩ̂1
, . . . , µΩ̂NI

and variance σ2
Ω̂
, µẐ and σ2

Ẑ
are easily obtained.

• Finally, we convert back to base 10 by scaling, such that

µZ (dBm) = ξ−1µẐ

σ2
Z = ξ−2σ2

Ẑ

where ξ = 0.23026.
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• Fenton’s method breaks down in the prediction of the first and second

moments for σΩ > 4 dB.

– Schwartz and Yeh’s method yields the exact first and second moments.

• However, Fenton’s method accurately predicts the tails of the complemen-

tary distribution function cdfc F c
I (x) = Pr(I ≥ x) and the cdf FI(x) = 1−F c

I (x) =

Pr(I < x).

– We are interested in the accuracy of the approximations

F c
I (x) ≈ Q







lnx− µẐ

σẐ







FI(x) ≈ 1−Q







lnx− µẐ

σẐ







when x is large and small, respectively.

– The cdfc is more important than the cdf for outage calculations and

predictions, since outages typically occur when the interference is large.

8



10
−2

10
−1

10
0

10
1

x

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
(I

<
x)

Wilkinson
Schwartz and Yeh
Farley
Simulation

NI=6
NI=2

Comparison of the cdf for the sum of two and six log-normal random variables with various

approximations; σΩ = 6 dB.

9



10
1

10
2

x

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
(I

>
x)

Wilkinson
Schwartz and Yeh
Farley
Simulation

Comparison of the cdfc for the sum of two log-normal random variables with various

approximations; σΩ = 6 dB.

10



10
1

10
2

x

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

P
(I

>
x)

Wilkinson
Schwartz and Yeh
Farley
Simulation

Comparison of the cdfc for the sum of six log-normal random variables with various

approximations; σΩ = 6 dB.

11



10
3

10
4

x

10
−4

10
−3

10
−2

10
−1

10
0

P
(I

>
x)

Wilkinson
Schwartz and Yeh
Farley
Simulation

Comparison of the cdfc for the sum of six log-normal random variables with various

approximations; σΩ = 12 dB.

12



Outage with Multiple Interferers

1. First obtain the mean and variance

µZ = µẐ/ξ

σ2
Z = σ2

Ẑ/ξ
2 ξ = 0.23026

2. Treat the average CIR as Gaussian distributed with mean and variance

µΛ(d) = µΩ(d0) − µZ (dBm)

σ2
Λ(d) = σ2

Ω + σ2
Z .

3. Compute the outage for a given location, described by d

O(d) = Q









µΩ(d0) − µZ − Λth(dB)
√

σ2
Ω + σ2

Z









4. Average over all locations d by Monte Carlo integration

O =
∫

RN O(d)pd(d)dd
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Single Co-channel Interferer

• For a single co-channel interferer

pΛ(d)(dB)(x) =
1√
4πσΩ

exp















−
(x− µΛ(d)(dB)

)2

4σ2
Ω















where

µΛ(d)(dB)
= µΩ(d0)(dB)

− µΩ(d1)(dB)

• The outage for a given d is

O(d) = Pr(Λ(d)(dB) < Λth(dB))

=
∫ Λth(dB)

−∞
1√
4πσΩ

exp















−
(x− µΛ(d)(dB)

)2

4σ2
Ω















dx

= Q







µΛ(d)(dB)
− Λth(dB)√
2σΩ






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R D-R

MSserving
   BS          BS

co-channel

Worst case interference from a single co-channel base-station.

• In this case d = (R,D − R).

• The worst case outage due to a single co-channel interferer is

O(R) = Q







µΩ(R)(dB)
− µΩ(D−R)(dB)

− Λth (dB)√
2σΩ






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• Using a simple inverse-β path loss characteristic

µΩ(dB)
= Ω(dB)(do)− 10β log10(d/do)

gives

O(R) = Q











10 log10
(

D
R − 1

)β − Λth (dB)√
2σΩ











• The minimum CIR margin on the cell fringe is

MΛ = 10 log10





D

R
− 1





β

− Λth (dB)

• For an ideal hexagonal layout D
R =

√
3N , so that

N =
1

3









10
MΛ+Λth (dB)

10β + 1









2

– A small cluster size is achieved by making the margin MΛ and receiver

threshold Λth small.
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Rician/Multiple Rayleigh Interferers

• Sometimes propagation conditions exist such that the received signals ex-

perience fading, but not shadowing. In this section, we calculate the outage

probability for the case of fading only.

– The received signal may consist of a direct line of sight (LoS) component,

or perhaps a specular component, accompanied by a diffuse component.

The envelope of the received desired signal experiences Ricean fading.

– The interfering signals are often assumed to be Rayleigh faded, because

a direct LoS is unlikely to exist due to the larger physical distances

between the co-channel interferers and the receiver.

• Let the instantaneous power in the desired signal and the NI interfering

signals be denoted by s0 and sk, k = 1, · · · , NI, respectively. Note that

si = α2
i , where α2

i is the squared-envelope.

• The carrier-to-interference ratio is defined as λ = s0/
∑NI
k=1 sk, and for a spec-

ified receiver threshold λth, the outage probability is

OI = P (λ < λth) .
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Single Interferer

• For the case of a single interferer, the outage probability reduces to the

simple closed form

OI =
λth

λth + A1
exp







− KA1

λth + A1







,

where K is the Rice factor of the desired signal, A1 = Ω0/(K + 1)Ω1, and

Ωk = E[sk].

• If the desired signal is Rayleigh faded, then the outage probability can be

obtained by setting K = 0.
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Multiple Interferers

• For the case of multiple interferers, each with mean power Ωk, the outage

probability has the closed form

OI = 1−
NI
∑

k=1



1− λth

λth + Ak
exp







− KAk

λth + Ak











NI
∏

j=1
j 6=k

Aj

Aj −Ak
,

where Ak = Ω0/(K + 1)Ωk. This expression is only valid if Ωi 6= Ωj when i 6= j,

i.e., the different interferers have different mean power.

• If all the interferers have the same mean power, then the outage probability

can be derived as

OI =
λth

λth + A1
exp







− KA1

λth + A1







×
NI−1
∑

k=0







A1

(λth + A1







k
k
∑

m=0







k

m







1

m!





Kλth

λth + A1





m

.

• If the desired signal is Rayleigh faded, then the probability of outage with

multiple Rayleigh faded interferers can be obtained by setting K = 0.
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Probability of outage with multiple interferers. The desired signal is Ricean faded with various

Rice factors, while the interfering signals are Rayleigh faded and of equal power; λth = 10.0 dB.
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