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Optimum Coherent Detection

Consider a set of M bandpass signals with complex envelopes {s̃1(t), s̃2(t), . . . , s̃M(t)}, such that

one waveform is transmitted every T seconds.

Transmit one of the M signals, say s̃n(t), over a flat fading channel with AWGN.

The received complex envelope is

r̃(t) = gs̃n(t) + ñ(t)

where g = αejφ.

The AWGN ñ(t) has one-sided power spectral density No watts/Hz and autocorrelation function

function φññ(τ ) = Noδ(τ ).

Problem: Suppose that g is known at the receiver; channel estimation is another problem.

By observing r̃(t) determine which signal was transmitted.
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Correlation Detector

The signal set {s̃1(t), s̃1(t), . . . , s̃M(t)} can be expressed in terms of a complete set of orthonor-

mal basis functions {ϕ1(t), ϕ2(t), . . . , ϕN(t)}, where N is the dimension of the signal space.

The basis functions do not span the noise space, i.e., the noise ñ(t) waveform cannot be rep-

resented exactly in terms of the basis functions. As will be shown later, the component of the

noise process that falls outside of the signal space is irrelevant to the detection of the signal. It

follows that

r̃i =
∫ ∞
−∞ r̃(t)ϕ∗

i (t)dt

= g
∫ ∞
−∞ s̃n(t)ϕ

∗
i (t)dt +

∫ ∞
−∞ ñ(t)ϕ∗

i (t)dt

= gs̃ni + ñi

Hence, the projection of the received complex envelope r̃(t) onto the signal space yields the vector

r̃ = gs̃n + ñ ,

where

r̃ = (r̃1, r̃2, . . . , r̃N)

s̃n = (s̃n1, s̃n2, . . . , s̃nN )

ñ = (ñ1, ñ2, . . . , ñN) .
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Quadrature Demodulator
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Correlation Detector
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Matched Filter Receiver

Suppose that the received complex envelope r̃(t) is filtered with a bank of matched filters having

the impulse responses

hi(t) = ϕ∗
i (To − t) , 0 ≤ t ≤ To

and sample the filter outputs at time t = To. Here To is the length of the shaping pulse.

The filter outputs are

yi(t) =
∫ t

0
r̃(τ )hi(t− τ )dτ

=
∫ t

0
r̃(τ )ϕ∗

i (To − t + τ )dτ

yi = yi(To) =
∫ To

0
r̃(τ )ϕ∗

i (τ )dτ

Note that yi = r̃i, i.e., the matched filter outputs are identical to the correlation detector outputs.
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Matched Filter Receiver
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Noise Statistics

The noise components ñk have mean

E[ñk] =
∫ ∞
−∞ E[ñ(t)]ϕ∗

k(t)dt = 0

and covariance

µjk =
1

2
E[ñjñ

∗
k] =

∫ ∞
−∞

∫ ∞
−∞

1

2
E[ñ(t)ñ∗(s)]ϕ∗

j(t)ϕk(s)dtds

= No

∫ ∞
−∞

∫ ∞
−∞ δ(t− s)ϕ∗

j(t)ϕk(s)dtds

= No

∫ ∞
−∞ ϕ∗

j(t)ϕk(t)dt

= Noδjk

Therefore, the ñk are independent zero mean complex Gaussian random variables with variance

No.
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Joint Conditional Density

• The vector ñ has the joint multivariate complex Gaussian density function

p(ñ) =
N
∏

i=1

1

2πNo
exp







− 1

2No
|ñi|2







=
1

(2πNo)N
exp







− 1

2No
‖ñ‖2







.

• Hence, the vector r̃ has the joint conditional density function

p(r̃|g, s̃m) =
1

(2πNo)N
exp







− 1

2No
‖r̃− gs̃m‖2







which is a multivariate complex Gaussian distribution with mean gs̃m.
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Noise Remainder Process

• Note that

r̃(t) =
N−1
∑

k=0

r̃kϕk(t) + z̃(t)

where z̃(t) is the remainder process

z̃(t) = ñ(t)−
N−1
∑

k=0

ñkϕk(t)

• The remainder process is outside the vector space spanned by the basis functions {ϕk}.
• Is z̃(t) important for the detection problem?

10



Irrelevance

Is the vector r̃ uncorrelated with z̃(t) and, hence, irrelevant? It follows that

1

2
E[z̃(t)r∗j ] =

1

2
E[z̃(t)]gs̃∗mj

+
1

2
E[z̃(t)ñ∗

j ]

=
1

2
E[z̃(t)ñ∗

j ]

=
1

2
E







ñ(t)−
N−1
∑

n=0

ñnϕn(t)



 ñ∗
j





=
∫ ∞
−∞

1

2
E[ñ(t)ñ∗(τ )]ϕj(τ )dτ −

N−1
∑

n=0

1

2
E[ñnñ

∗
j ]ϕn(t)

= Noϕj(t)−Noϕj(t) = 0

Hence, the vector r̃ is uncorrelated with z̃(t) and, therefore, z̃(t) is irrelevant since it does not

contain any information about r̃.

This is Wozencraft’s irrelevance theorem which is certainly not irrelevant!
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Optimum Decision Rule

Suppose that s̃m(t) is transmitted and the correlation or matched filter receiver outputs the vector

r̃ = gs̃m + ñ.

The maximum a posteriori (MAP) receiver observes r̃ and decides in favour of the message

s̃k that maximizes the a posteriori probability P (s̃k sent|g, r̃).

If r̃ is received and the decision is made that s̃k was sent, then the conditional probability of

decision error is

Pe|r̃ = P (s̃k not sent|g, r̃) = 1− P (s̃k sent|g, r̃)
and the unconditional probability of error is

Pe =
∫ ∞
−∞ (1− P (s̃k sent|g, r̃) p(g, r̃)dgdr̃

Since MAP receiver maximizes P (s̃k sent|g, r̃) for any and all g and r̃ it minimizes the probability

of error.
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Bayes’ Rule Applied

Using Bayes’ rule, the a posteriori probability P (s̃m|g, r̃) can be written in the form

P (s̃m|g, r̃) =
p(r̃|g, s̃m)Pm

p(r̃)
m = 1, · · · , M

Therefore, the MAP decision rule is

choose s̃m if p(r̃|g, s̃m)Pm ≥ p(r̃|g, s̃m̂)Pm̂ ∀ m̂ 6= m

A receiver that chooses sm to maximize p(r̃|gs̃m) regardless of the a priori message probabilities

Pm is called a maximum likelihood (ML) receiver.

The ML decision rule is

choose sm if p(r̃|g, s̃m) ≥ p(r̃|g, s̃m̂) ∀ m̂ 6= m

If the messages are equally likely, i.e., Pm = 1/M , then the sm that maximizes p(r̃|g, s̃m) also
maximizes P (s̃m|g, r̃). Under this condition, the ML receiver also minimizes the probability of

error.
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Slow Flat Fading Channels with AWGN

• The joint conditional pdf p(r̃|g, s̃m) is

p(r̃|g, s̃m) =
1

(2πNo)N
exp







− 1

2No
‖r̃− gs̃m‖2







.

• When the additive impairment is AWGN, the signal vector s̃m that maximizes p(r̃|g, s̃m) will
also minimizes the Euclidean distance

µ1(s̃m) = ‖r̃− gs̃m‖2

• In other words, the ML receiver decides in favor of the scaled message vector gs̃m that is

closest in squared Euclidean distance to the received vector r̃. Such a receiver is said to make

minimum distance decisions.

• An alternative form of the ML receiver can be derived as

µ1(s̃m) = ‖r̃‖2 − 2Re {(r̃, gs̃m)} + |g|2‖s̃m‖2

• Then notice that ‖r̃‖2 is independent of s̃m and ‖s̃m‖2 = 2Em. Hence, the ML just needs to

maximize the metric

µ2(s̃m) = Re {(r̃, gs̃m)} − |g|2Em .

• Using the definition of the inner product, the above decision metric can be rewritten in the

alternate form

µ2(s̃m) = Re
{∫ ∞

−∞ r̃(t)g∗s̃∗m(t)dt
}

− |g|2Em

≡ Re
{∫ ∞

−∞ r̃(t)e−jφs̃∗m(t)dt
}

− αEm ,m = 1, . . . ,M .
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Metric Computer for a Slow Flat Fading Channel
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Pairwise Error Probability

• Consider two equally likely signal vectors s̃j and s̃k in a signal constellation of size M .

• The two signal vectors s̃j and s̃k are separated at the receiver by the squared Euclidean

distance ‖gs̃j − gs̃k‖2 = α2‖s̃j − s̃k‖2.
• A decision boundary can be established at the midpoint between the two signal vectors as

shown below.
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Pairwise Error Probability

• Suppose that vector s̃j is sent, and let P[e|s̃j] denote the probability of ML decision error.

This error probability is just the probability that the noise along the vector gs̃j − gs̃k forces

the received vector r̃ = gs̃j + ñ to cross the decision boundary.

• Due to the circularly symmetric property of the AWGN noise, the pdf of the noise vector ñ

is invariant to its rotation about the origin in the signal space. Hence, the noise component

along the line that passes through the two signal vectors will have zero mean and variance

No.

• It follows that the error probability is equal to

P[e|s̃j] = Q











√

√

√

√

√

√

α2d̃2jk
4No











,

where d̃2jk = ‖s̃j − s̃k‖2 is the squared Euclidean distance between s̃j and s̃k.
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Error Probability for BPSK, MSK, QPSK

• The error probability is

Pb(γb) = Q(
√
2γb)

where γb = α2E/No is the received bit energy-to-noise ratio

• For Rayleigh fading, α is Rayleigh distributed, so that

pγb(x) =
1

γ̄b
e−x/γ̄b , γ̄b = E[α2]

Eb

No

• Therefore, the average bit error probability is

Pb =
∫ ∞
0

Q(
√
2γb)p(γb)dγb

=
1

2





 1−
√

√

√

√

√

γ̄b
1 + γ̄b





 ≈ 1

4γ̄b

• Fact: BPSK, MSK,and QPSK all have the same power performance.
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Bit error Probability for Coherent BPSK, MSK,and

QPSK
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Error Probability for QAM

• Consider an M-QAM system with M = 4m for some integer m.

• The probability of symbol error is

PM = 1− (1− P√
M)2

where

P√
M = 2



1− 1√
M



Q







√

√

√

√

√

3

M − 1
γs







and

γs =
Eav

No
= log2M

Eb av

No

is the average received symbol energy-to-noise ratio.

• If the channel is Rayleigh faded, the average symbol error probability is

PM =
∫ ∞
0

PM(x)pγs(x)dx

• With Gray coding the bit error probability is approximately

Pb ≈ PM/log2M
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Bit Error Probability for QAM

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
γ−

b (dB)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
b

M=4
M=16
M=64

flat Rayleigh fading

no fading

21


