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OFDM on AWGN and ISI Channels

Reading: 10.1
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Performance in AWGN

• Suppose that the discrete-time OFDM time-domain sequence with a cyclic suffix, Xg
n =

{Xg
n,m}N+G−1

m=0 , is passed through a balanced pair of digital-to-analog converters (DACs), and

the resulting complex envelope is transmitted over a quasi-static flat fading channel with

complex gain g.

• The receiver uses a quadrature demodulator to extract the received complex envelope r̃(t) =

r̃I(t) + jr̃Q(t).

• Suppose that the quadrature components r̃I(t) and r̃Q(t) are each passed through an ideal

anti-aliasing filter (ideal low-pass filter) having a cutoff frequency 1/(2T g
s ) followed by an

analog-to-digital converter (ADC)

• This produces the received complex-valued sample sequence Rg
n = {Rg

n,m}N+G−1
m=0 , where

Rg
n,m = gXg

n,m + ñn,m ,

g = αejφ is the complex channel gain, and the ñn,m are the complex-valued Gaussian noise

samples.

• For an ideal anti-aliasing filter having a cutoff frequency 1/(2T g
s ), the ñn,m are independent

zero-mean complex Gaussian random variables with variance σ2 = 1
2E[|ñn,m|2] = No/T

g
s ,

where T g
s = NTs/(N +G).
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Performance in AWGN

• Assuming a cyclic suffix, the receiver first removes the guard interval according to

Rn,m = Rg
n,G+(m−G)N

, 0 ≤ m ≤ N − 1 ,

where (m)N is the residue of m modulo N . Demodulation is then performed by computing

the FFT on the block Rn = {Rn,m}N−1
m=0 to yield the vector zn = {zn,k}N−1

k=0 of N decision

variables

zn,k =
1

N

N−1
∑

m=0
Rn,me

−j2πkm
N

= gAxn,k + νn,k , k = 0, . . . , N − 1 ,

where A =
√

2Eh/T , T = (N +G)T g
s , and the noise terms are given by

νn,k =
1

N

N−1
∑

m=0
ñn,me

−j2πkm
N , k = 0, . . . , N − 1 .

• It can be shown that the νn,k are zero mean complex Gaussian random variables with covari-

ance

φj,k =
1

2
E[νn,jν

∗
n,k] =

No

NT g
s

δjk .

Hence, the zn,k are independent Gaussian random variables with mean g
√

2Eh/Txn,k and

variance No/NT g
s .
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Performance in AWGN

• To be consistent with our earlier results for PSK and QAM signals, we can multiply the zn,k
for convenience by the scalar

√
NT g

s . Such scaling gives

z̃n,k = g
√

2EhN/(N +G)xn,k + ν̃n,k ,

where the ν̃n,k are i.i.d. zero-mean Gaussian random variables with variance No.

• Notice that
√

2EhN/(N +G)xn,k = s̃n,k is equal to the complex signal vector that is trans-

mitted on the ith sub-carrier, where the term N/(N + G) represents the loss in effective

symbol energy due to the insertion of the cyclic guard interval.

• For each of the z̃n,k, the receiver decides in favor of the signal vector s̃n,k that minimizes the

squared Euclidean distance

µ(s̃n,k) = ‖z̃n,k − gs̃n,k‖2 , k = 0, . . . , N − 1 .

• It is apparent that the probability of symbol error is identical to that achieved with indepen-

dent modulation on each of the sub-carriers. This is expected, because the sub-carriers are

mutually orthogonal in time.
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Combating ISI with OFDM

• Suppose that the IFFT output vector Xn = {Xn,m}N−1
m=0 is appended with a cyclic suffix to

yield the vector Xg
n = {Xg

n,m}N+G−1
m=0 , where

Xg
n,m = Xn,(m)N

= A
N−1
∑

k=0
xn,ke

j2πkm
N , m = 0, 1, . . . , N +G− 1 ,

G is the length of the guard interval in samples, and (m)N is the residue of m modulo N .

To maintain the data rate Rs = 1/Ts, the DAC in the transmitter is clocked with rate

Rg
s =

N+G
N

Rs, due to the insertion of the cyclic guard interval.

• Consider a time-invariant ISI channel with impulse response g(t). The combination of the

DAC, waveform channel g(t), anti aliasing filter, and DAC yields an overall discrete-time

channel with sampled impulse response g = {gm}Lm=0, where L is the length of the discrete-

time channel impulse response.

• The discrete-time linear convolution of the transmitted sequence {Xg
n} with the discrete-time

channel produces the discrete-time received sequence {Rg
n,m}, where

Rg
n,m =











∑m
i=0 giX

g
n,m−i +

∑L
i=m+1 giX

g
n−1,N+G+m−i + ñn,m , 0 ≤ m < L

∑L
i=0 giX

g
n,m−i + ñn,m , L ≤ m ≤ N +G− 1

.

7



Removal of Guard Interval

• To remove the ISI introduced by the channel, the first G received samples {Rg
n,m}G−1

m=0 are

discarded and replaced with the last G received samples {Rg
n,m}N+G−1

m=N .

• If the length of the guard interval satisfies G ≥ L, then we obtain the received sequence

Rn,m = Rg
n,G+(m−G)N

=
L
∑

i=0
giXn,(m−i)N + ñn,(m−i)N , 0 ≤ m ≤ N − 1 .

• Note that the first term represents a circular convolution of the transmitted sequence Xn =

{Xn,m} with the discrete-time channel g = {gm}Lm=0.

block blockblock
-1 +1n

G ISI G ISI ISIG

G G G

n n

Removal of ISI using a cyclic suffix

8



• The OFDM baseband demodulator computes the DFT of the vector Rn. This yields the

output vector

zn,i =
1

N

N−1
∑

m=0
Rn,me

−j 2πmi
N

= TiAxn,i + νn,i , 0 ≤ i ≤ N − 1 ,

where

Ti =
L
∑

m=0
gme

−j 2πmi
N

and the noise samples {νn,i} are i.i.d with zero-mean and variance No/(NT g
s ).

• Note that T = {Ti}N−1
i=0 is the DFT of the zero padded sequence g = {gm}N−1

m=0 and is equal

to the sampled frequency response of the channel.

• To be consistent with our earlier results, we can multiply the zn,i for convenience by the

scalar
√
NT g

s , giving

z̃n,i = TiÂxn,i + ν̃n,i i = 0, . . . , N − 1 ,

where Â =
√

2EhN/(N +G) and the ν̃n,i are i.i.d. zero-mean Gaussian random variables

with variance No.

• Observe that each z̃n,i depends only on the corresponding data symbol xn,i and, therefore,

the ISI has been completely removed.

• Once again, for each of the z̃n,i, the receiver decides in favor of the signal vector s̃m that

minimizes the squared Euclidean distance

µ(s̃m) = ‖z̃n,i − TiÂxn,i‖2 .
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