EE6604
 Personal \& Mobile Communications

Week 12b

OFDM on AWGN and ISI Channels
Reading: 10.1

FFT-based OFDM Transmitter

FFT-based OFDM Receiver

Performance in AWGN

- Suppose that the discrete-time OFDM time-domain sequence with a cyclic suffix, $\mathbf{X}_{n}^{g}=$ $\left\{X_{n, m}^{g}\right\}_{m=0}^{N+G-1}$, is passed through a balanced pair of digital-to-analog converters (DACs), and the resulting complex envelope is transmitted over a quasi-static flat fading channel with complex gain g.
- The receiver uses a quadrature demodulator to extract the received complex envelope $\tilde{r}(t)=$ $\tilde{r}_{I}(t)+j \tilde{r}_{Q}(t)$.
- Suppose that the quadrature components $\tilde{r}_{I}(t)$ and $\tilde{r}_{Q}(t)$ are each passed through an ideal anti-aliasing filter (ideal low-pass filter) having a cutoff frequency $1 /\left(2 T_{s}^{g}\right)$ followed by an analog-to-digital converter (ADC)
- This produces the received complex-valued sample sequence $\mathbf{R}_{n}^{g}=\left\{R_{n, m}^{g}\right\}_{m=0}^{N+G-1}$, where

$$
R_{n, m}^{g}=g X_{n, m}^{g}+\tilde{n}_{n, m}
$$

$g=\alpha \mathrm{e}^{j \phi}$ is the complex channel gain, and the $\tilde{n}_{n, m}$ are the complex-valued Gaussian noise samples.

- For an ideal anti-aliasing filter having a cutoff frequency $1 /\left(2 T_{s}^{g}\right)$, the $\tilde{n}_{n, m}$ are independent zero-mean complex Gaussian random variables with variance $\sigma^{2}=\frac{1}{2} \mathrm{E}\left[\left|\tilde{n}_{n, m}\right|^{2}\right]=N_{o} / T_{s}^{g}$, where $T_{s}^{g}=N T_{s} /(N+G)$.

Performance in AWGN

- Assuming a cyclic suffix, the receiver first removes the guard interval according to

$$
R_{n, m}=R_{n, G+(m-G)_{N}}^{g}, 0 \leq m \leq N-1
$$

where $(m)_{N}$ is the residue of m modulo N. Demodulation is then performed by computing the FFT on the block $\mathbf{R}_{n}=\left\{R_{n, m}\right\}_{m=0}^{N-1}$ to yield the vector $\mathbf{z}_{n}=\left\{z_{n, k}\right\}_{k=0}^{N-1}$ of N decision variables

$$
\begin{aligned}
z_{n, k} & =\frac{1}{N} \sum_{m=0}^{N-1} R_{n, m} \mathrm{e}^{-\mathrm{j} \frac{\mathrm{j} \pi k m}{N}} \\
& =g A x_{n, k}+\nu_{n, k}, \quad k=0, \ldots, N-1,
\end{aligned}
$$

where $A=\sqrt{2 E_{h} / T}, T=(N+G) T_{s}^{g}$, and the noise terms are given by

$$
\nu_{n, k}=\frac{1}{N} \sum_{m=0}^{N-1} \tilde{n}_{n, m} \mathrm{e}^{-\frac{j 2 \pi k m}{N}}, \quad k=0, \ldots, N-1 .
$$

- It can be shown that the $\nu_{n, k}$ are zero mean complex Gaussian random variables with covariance

$$
\phi_{j, k}=\frac{1}{2} \mathrm{E}\left[\nu_{n, j} \nu_{n, k}^{*}\right]=\frac{N_{o}}{N T_{s}^{g}} \delta_{j k} .
$$

Hence, the $z_{n, k}$ are independent Gaussian random variables with mean $g \sqrt{2 E_{h} / T} x_{n, k}$ and variance $N_{o} / N T_{s}^{g}$.

Performance in AWGN

- To be consistent with our earlier results for PSK and QAM signals, we can multiply the $z_{n, k}$ for convenience by the scalar $\sqrt{N T_{g}^{g}}$. Such scaling gives

$$
\tilde{z}_{n, k}=g \sqrt{2 E_{h} N /(N+G)} x_{n, k}+\tilde{\nu}_{n, k},
$$

where the $\tilde{\nu}_{n, k}$ are i.i.d. zero-mean Gaussian random variables with variance N_{o}.

- Notice that $\sqrt{2 E_{h} N /(N+G)} x_{n, k}=\tilde{s}_{n, k}$ is equal to the complex signal vector that is transmitted on the i th sub-carrier, where the term $N /(N+G)$ represents the loss in effective symbol energy due to the insertion of the cyclic guard interval.
- For each of the $\tilde{z}_{n, k}$, the receiver decides in favor of the signal vector $\tilde{s}_{n, k}$ that minimizes the squared Euclidean distance

$$
\mu\left(\tilde{s}_{n, k}\right)=\left\|\tilde{z}_{n, k}-g \tilde{s}_{n, k}\right\|^{2}, \quad k=0, \ldots, N-1 .
$$

- It is apparent that the probability of symbol error is identical to that achieved with independent modulation on each of the sub-carriers. This is expected, because the sub-carriers are mutually orthogonal in time.

Combating ISI with OFDM

- Suppose that the IFFT output vector $\mathbf{X}_{n}=\left\{X_{n, m}\right\}_{m=0}^{N-1}$ is appended with a cyclic suffix to yield the vector $\mathbf{X}_{n}^{g}=\left\{X_{n, m}^{g}\right\}_{m=0}^{N+G-1}$, where

$$
\begin{aligned}
X_{n, m}^{g} & =X_{n,(m)_{N}} \\
& =A \sum_{k=0}^{N-1} x_{n, k} e^{\frac{j 2 \pi k m}{N}}, \quad m=0,1, \ldots, N+G-1,
\end{aligned}
$$

G is the length of the guard interval in samples, and $(m)_{N}$ is the residue of m modulo N. To maintain the data rate $R_{s}=1 / T_{s}$, the DAC in the transmitter is clocked with rate $R_{s}^{g}=\frac{N+G}{N} R_{s}$, due to the insertion of the cyclic guard interval.

- Consider a time-invariant ISI channel with impulse response $g(t)$. The combination of the DAC, waveform channel $g(t)$, anti aliasing filter, and DAC yields an overall discrete-time channel with sampled impulse response $\mathbf{g}=\left\{g_{m}\right\}_{m=0}^{L}$, where L is the length of the discretetime channel impulse response.
- The discrete-time linear convolution of the transmitted sequence $\left\{\mathbf{X}_{n}^{g}\right\}$ with the discrete-time channel produces the discrete-time received sequence $\left\{R_{n, m}^{g}\right\}$, where

$$
R_{n, m}^{g}=\left\{\begin{array}{l}
\Sigma_{i=0}^{m} g_{i} X_{n, m-i}^{g}+\sum_{i=m+1}^{L} g_{i} X_{n-1, N+G+m-i}^{g}+\tilde{n}_{n, m}, \quad 0 \leq m<L \\
\sum_{i=0}^{L} g_{i} X_{n, m-i}^{g}+\tilde{n}_{n, m}, \quad L \leq m \leq N+G-1
\end{array} .\right.
$$

Removal of Guard Interval

- To remove the ISI introduced by the channel, the first G received samples $\left\{R_{n, m}^{g}\right\}_{m=0}^{G-1}$ are discarded and replaced with the last G received samples $\left\{R_{n, m}^{g}\right\}_{m=N}^{N+G-1}$.
- If the length of the guard interval satisfies $G \geq L$, then we obtain the received sequence

$$
\begin{aligned}
R_{n, m} & =R_{n, G+(m-G)_{N}}^{g} \\
& =\sum_{i=0}^{L} g_{i} X_{n,(m-i)_{N}}+\tilde{n}_{n,(m-i)_{N}}, \quad 0 \leq m \leq N-1 .
\end{aligned}
$$

- Note that the first term represents a circular convolution of the transmitted sequence $\mathbf{X}_{n}=$ $\left\{X_{n, m}\right\}$ with the discrete-time channel $\mathbf{g}=\left\{g_{m}\right\}_{m=0}^{L}$.

Removal of ISI using a cyclic suffix

- The OFDM baseband demodulator computes the DFT of the vector \mathbf{R}_{n}. This yields the output vector

$$
\begin{aligned}
z_{n, i} & =\frac{1}{N} \sum_{m=0}^{N-1} R_{n, m} \mathrm{e}^{-j \frac{2 \pi m i}{N}} \\
& =T_{i} A x_{n, i}+\nu_{n, i}, \quad 0 \leq i \leq N-1
\end{aligned}
$$

where

$$
T_{i}=\sum_{m=0}^{L} g_{m} \mathrm{e}^{-j \frac{2 \pi m i}{N}}
$$

and the noise samples $\left\{\nu_{n, i}\right\}$ are i.i.d with zero-mean and variance $N_{o} /\left(N T_{s}^{g}\right)$.

- Note that $\mathbf{T}=\left\{T_{i}\right\}_{i=0}^{N-1}$ is the DFT of the zero padded sequence $\mathbf{g}=\left\{g_{m}\right\}_{m=0}^{N-1}$ and is equal to the sampled frequency response of the channel.
- To be consistent with our earlier results, we can multiply the $z_{n, i}$ for convenience by the scalar $\sqrt{N T_{s}^{g}}$, giving

$$
\tilde{z}_{n, i}=T_{i} \hat{A} x_{n, i}+\tilde{\nu}_{n, i} \quad i=0, \ldots, N-1
$$

where $\hat{A}=\sqrt{2 E_{h} N /(N+G)}$ and the $\tilde{\nu}_{n, i}$ are i.i.d. zero-mean Gaussian random variables with variance N_{o}.

- Observe that each $\tilde{z}_{n, i}$ depends only on the corresponding data symbol $x_{n, i}$ and, therefore, the ISI has been completely removed.
- Once again, for each of the $\tilde{z}_{n, i}$, the receiver decides in favor of the signal vector \tilde{s}_{m} that minimizes the squared Euclidean distance

$$
\mu\left(\tilde{s}_{m}\right)=\left\|\tilde{z}_{n, i}-T_{i} \hat{A} x_{n, i}\right\|^{2}
$$

