EE6604

Personal & Mobile Communications

Week 12b

OFDM on AWGN and ISI Channels

Reading: 10.1

FFT-based OFDM Transmitter

FFT-based OFDM Receiver

Performance in AWGN

- Suppose that the discrete-time OFDM time-domain sequence with a cyclic suffix, $\mathbf{X}_n^g = \{X_{n,m}^g\}_{m=0}^{N+G-1}$, is passed through a balanced pair of digital-to-analog converters (DACs), and the resulting complex envelope is transmitted over a quasi-static flat fading channel with complex gain g.
- The receiver uses a quadrature demodulator to extract the received complex envelope $\tilde{r}(t) = \tilde{r}_I(t) + j\tilde{r}_Q(t)$.
- Suppose that the quadrature components $\tilde{r}_I(t)$ and $\tilde{r}_Q(t)$ are each passed through an ideal anti-aliasing filter (ideal low-pass filter) having a cutoff frequency $1/(2T_s^g)$ followed by an analog-to-digital converter (ADC)
- This produces the received complex-valued sample sequence $\mathbf{R}_n^g = \{R_{n,m}^g\}_{m=0}^{N+G-1}$, where

$$R^g_{n,m} = gX^g_{n,m} + \tilde{n}_{n,m} ,$$

 $g = \alpha e^{j\phi}$ is the complex channel gain, and the $\tilde{n}_{n,m}$ are the complex-valued Gaussian noise samples.

• For an ideal anti-aliasing filter having a cutoff frequency $1/(2T_s^g)$, the $\tilde{n}_{n,m}$ are independent zero-mean complex Gaussian random variables with variance $\sigma^2 = \frac{1}{2} \mathbb{E}[|\tilde{n}_{n,m}|^2] = N_o/T_s^g$, where $T_s^g = NT_s/(N+G)$.

Performance in AWGN

• Assuming a cyclic suffix, the receiver first removes the guard interval according to

$$R_{n,m} = R^g_{n,G+(m-G)_N}, \ 0 \le m \le N-1$$
,

where $(m)_N$ is the residue of m modulo N. Demodulation is then performed by computing the FFT on the block $\mathbf{R}_n = \{R_{n,m}\}_{m=0}^{N-1}$ to yield the vector $\mathbf{z}_n = \{z_{n,k}\}_{k=0}^{N-1}$ of N decision variables

$$z_{n,k} = \frac{1}{N} \sum_{m=0}^{N-1} R_{n,m} e^{-\frac{j2\pi km}{N}} = gAx_{n,k} + \nu_{n,k} , \quad k = 0, \dots, N-1 ,$$

where $A = \sqrt{2E_h/T}$, $T = (N+G)T_s^g$, and the noise terms are given by

$$\nu_{n,k} = \frac{1}{N} \sum_{m=0}^{N-1} \tilde{n}_{n,m} e^{-\frac{j2\pi km}{N}}, \quad k = 0, \dots, N-1$$
.

• It can be shown that the $\nu_{n,k}$ are zero mean complex Gaussian random variables with covariance

$$\phi_{j,k} = \frac{1}{2} \mathbb{E}[\nu_{n,j} \nu_{n,k}^*] = \frac{N_o}{N T_s^g} \delta_{jk} .$$

Hence, the $z_{n,k}$ are independent Gaussian random variables with mean $g\sqrt{2E_h/Tx_{n,k}}$ and variance N_o/NT_s^g .

Performance in AWGN

• To be consistent with our earlier results for PSK and QAM signals, we can multiply the $z_{n,k}$ for convenience by the scalar $\sqrt{NT_s^g}$. Such scaling gives

$$\tilde{z}_{n,k} = g\sqrt{2E_h N/(N+G)}x_{n,k} + \tilde{\nu}_{n,k} ,$$

where the $\tilde{\nu}_{n,k}$ are i.i.d. zero-mean Gaussian random variables with variance N_o .

- Notice that $\sqrt{2E_hN/(N+G)x_{n,k}} = \tilde{s}_{n,k}$ is equal to the complex signal vector that is transmitted on the *i*th sub-carrier, where the term N/(N+G) represents the loss in effective symbol energy due to the insertion of the cyclic guard interval.
- For *each* of the $\tilde{z}_{n,k}$, the receiver decides in favor of the *signal vector* $\tilde{s}_{n,k}$ that minimizes the squared Euclidean distance

$$\mu(\tilde{s}_{n,k}) = \|\tilde{z}_{n,k} - g\tilde{s}_{n,k}\|^2$$
, $k = 0, \dots, N-1$.

• It is apparent that the probability of symbol error is identical to that achieved with independent modulation on each of the sub-carriers. This is expected, because the sub-carriers are mutually orthogonal in time.

Combating ISI with OFDM

• Suppose that the IFFT output vector $\mathbf{X}_n = \{X_{n,m}\}_{m=0}^{N-1}$ is appended with a cyclic suffix to yield the vector $\mathbf{X}_n^g = \{X_{n,m}^g\}_{m=0}^{N+G-1}$, where

$$X_{n,m}^{g} = X_{n,(m)_{N}}$$

= $A \sum_{k=0}^{N-1} x_{n,k} e^{\frac{j2\pi km}{N}}$, $m = 0, 1, ..., N + G - 1$,

G is the length of the guard interval in samples, and $(m)_N$ is the residue of m modulo N. To maintain the data rate $R_s = 1/T_s$, the DAC in the transmitter is clocked with rate $R_s^g = \frac{N+G}{N}R_s$, due to the insertion of the cyclic guard interval.

- Consider a time-invariant ISI channel with impulse response g(t). The combination of the DAC, waveform channel g(t), anti aliasing filter, and DAC yields an overall discrete-time channel with sampled impulse response $\mathbf{g} = \{g_m\}_{m=0}^L$, where L is the length of the discrete-time channel impulse response.
- The discrete-time linear convolution of the transmitted sequence $\{\mathbf{X}_n^g\}$ with the discrete-time channel produces the discrete-time received sequence $\{R_{n,m}^g\}$, where

$$R_{n,m}^{g} = \begin{cases} \sum_{i=0}^{m} g_{i} X_{n,m-i}^{g} + \sum_{i=m+1}^{L} g_{i} X_{n-1,N+G+m-i}^{g} + \tilde{n}_{n,m} , & 0 \le m < L \\ \sum_{i=0}^{L} g_{i} X_{n,m-i}^{g} + \tilde{n}_{n,m} , & L \le m \le N + G - 1 \end{cases}$$

Removal of Guard Interval

- To remove the ISI introduced by the channel, the first G received samples $\{R_{n,m}^g\}_{m=0}^{G-1}$ are discarded and replaced with the last G received samples $\{R_{n,m}^g\}_{m=N}^{N+G-1}$.
- If the length of the guard interval satisfies $G \ge L$, then we obtain the received sequence

$$R_{n,m} = R_{n,G+(m-G)_N}^g$$

= $\sum_{i=0}^{L} g_i X_{n,(m-i)_N} + \tilde{n}_{n,(m-i)_N}$, $0 \le m \le N-1$.

• Note that the first term represents a circular convolution of the transmitted sequence $\mathbf{X}_n = \{X_{n,m}\}$ with the discrete-time channel $\mathbf{g} = \{g_m\}_{m=0}^L$.

Removal of ISI using a cyclic suffix

• The OFDM baseband demodulator computes the DFT of the vector \mathbf{R}_n . This yields the output vector

$$z_{n,i} = \frac{1}{N} \sum_{m=0}^{N-1} R_{n,m} e^{-j\frac{2\pi m i}{N}}$$

= $T_i A x_{n,i} + \nu_{n,i}$, $0 \le i \le N-1$,

where

$$T_i = \sum_{m=0}^{L} g_m \mathrm{e}^{-j\frac{2\pi m i}{N}}$$

and the noise samples $\{\nu_{n,i}\}$ are i.i.d with zero-mean and variance $N_o/(NT_s^g)$.

- Note that $\mathbf{T} = \{T_i\}_{i=0}^{N-1}$ is the DFT of the zero padded sequence $\mathbf{g} = \{g_m\}_{m=0}^{N-1}$ and is equal to the sampled frequency response of the channel.
- To be consistent with our earlier results, we can multiply the $z_{n,i}$ for convenience by the scalar $\sqrt{NT_s^g}$, giving

$$\tilde{z}_{n,i} = T_i \hat{A} x_{n,i} + \tilde{\nu}_{n,i} \quad i = 0, \dots, N-1 \quad ,$$

where $\hat{A} = \sqrt{2E_h N/(N+G)}$ and the $\tilde{\nu}_{n,i}$ are i.i.d. zero-mean Gaussian random variables with variance N_o .

- Observe that each $\tilde{z}_{n,i}$ depends only on the corresponding data symbol $x_{n,i}$ and, therefore, the ISI has been completely removed.
- Once again, for *each* of the $\tilde{z}_{n,i}$, the receiver decides in favor of the *signal vector* \tilde{s}_m that minimizes the squared Euclidean distance

$$\mu(\tilde{s}_m) = \|\tilde{z}_{n,i} - T_i \hat{A} x_{n,i}\|^2$$
.