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Diversity Methods

• Diversity combats fading by providing the receiver with multiple uncorrelated replicas of the

same information bearing signal.

• There are several types of receiver diversity methods:

– spatial, angle, polarization, frequency, time, and multipath diversity

• There are different methods to combine the diversity branches.

– maximal ratio, equal gain, switched, and selective combining.

• If the signal s̃m(t) is transmitted, the received complex envelopes on the different diversity

branches are

r̃k(t) = gks̃m(t) + ñk(t), k = 1, . . . , L

– L is the number of diversity branches.

– gk = αke
jφk is the fading gain associated with the kth branch.

– The AWGN processes ñk(t) are independent from branch to branch.

• With Rayleigh fading, the instantaneous received modulated symbol energy-to-noise ratio on

the kth diversity branch has the exponential pdf

pγk(x) =
1

γ̄k
e−x/γ̄k ,

where γ̄k is the average received branch symbol energy-to-noise ratio for the kth diversity

branch. For balanced diversity branches γ̄k = γ̄c , k = 1, . . . L.
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Selective Combining (SC)

• With ideal SC, the branch with the largest symbol energy-to-noise ratio is always selected

such that

r̃ = max
|gk|

r̃k .

• The instantaneous symbol energy-to-noise ratio at the output of the selective combiner is

γs
s = max {γ1, γ2, · · · , γL} ,

where L is the number of branches.

• If the branches are independently faded, then order statistics gives the cumulative distribution

function (cdf)

Fγss(x) = Pr [γ1 ≤ x, γ2 ≤ x, · · · , γL ≤ x] =
[

1− e−x/γ̄c
]L

, x ≥ 0 .

• Differentiating the above expression gives the pdf of the instantaneous output symbol energy-

to-noise ratio as

pγss(x) =
L

γ̄c

[

1− e−x/γ̄c
]L−1

e−x/γ̄c , x ≥ 0 .

• The above pdf can be used to evaluate the performance of various digital modulation schemes.

4



-40.0 -30.0 -20.0 -10.0 0.0 10.0
γb

s
 - γ−

c (dB)

10
-4

10
-3

10
-2

10
-1

10
0

 F
(γ

bs )

L = 1
L = 2
L = 3
L = 4

Cdf of γs
b for selective combining;

γ̄c is the average branch symbol energy-to-noise ratio.
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Error Probability with Selective Combining (SC)

• The bit error probability with slow flat fading can be obtained by averaging the bit error

probability, as a function of the symbol energy-to-noise ratio, over the pdf of γs
s. For example,

the bit error probability for binary DPSK with differential detection on an AWGN channel

is

Pb(γ
s
s) =

1

2
e−γss ,

where γs
s can be interpreted as the instantaneous bit energy-to-noise ratio since binary mod-

ulation is being used. Hence, with SC

Pb =
∫ ∞
0

Pb(x)pγss(x)dx

=
∫ ∞
0

L

2γ̄c
e−(1+1/γ̄c)x

(

1− e−x/γ̄c
)L−1

dx

=
L

2γ̄c

L−1
∑

n=0







L− 1

n





(−1)n
∫ ∞
0

e−(1+(n+1)/γ̄c)xdx

=
L

2

L−1
∑

n=0

(L−1
n

)

(−1)n

1 + n + γ̄c
,

where we have used the binomial expansion

(1− x)L−1 =
L−1
∑

n=0







L− 1

n





(−1)nxn .
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Error Probability with Selective Combining (SC)

• The bit error probability for BPSK on an AWGN channel is

Pb(γ
s
s) = Q

(
√

2γs
b

)

,

where γs
b is the instantaneous bit energy-to-noise ratio at the output of the selective combiner.

Hence, with selective combining

Pb =
∫ ∞
0

Pb(x)pγs
b
(x)dx

=
∫ ∞
0

Q
(√

2x
) L

γ̄c

[

1− e−x/γ̄c
]L−1

e−x/γ̄cdx

=
1

2

L
∑

k=0
(−1)k







L

k









1 +
k

γ̄c





−1/2

where γ̄c is the average branch bit energy-to-noise ratio.
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Bit error probability for BPSK and 1 and 2-branch selective diversity combining.
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Maximal Ratio Combining (MRC)

• The vector

r̃ = vec (r̃1, r̃2, · · · , r̃L)
has the multivariate complex Gaussian distribution

p(r̃|g, s̃m) =
1

(2πNo)LN
exp







− 1

2No

L
∑

k=1
‖r̃k − gks̃m‖2







where g = (g1, g2, . . . , gL) is the channel vector.

• The maximum likelihood receiver chooses the message vector s̃m to maximize the likelihood

function p(r̃|g, s̃m) or the log-likelihood function logp(r̃|g, s̃m). This is equivalent to choosing
s̃m to minimize the decision variable

µ(s̃m) =
L
∑

k=1
‖r̃k − gks̃m‖2

=
L
∑

k=1

(

‖r̃k‖2 − 2Re{r̃k · g∗ks̃∗m} + |gk|2‖s̃m‖2
)

• Alternatively, we can just choose s̃m to maximize the decision variable

µ2(s̃m) =
L
∑

k=1
Re {g∗kr̃k · s̃∗m} − Em

L
∑

k=1
|gk|2

= Re







L
∑

k=1
g∗kr̃k · s̃∗m







− Em

L
∑

k=1
|gk|2
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MRC Performance

• The MRC receiver combines the diversity branches according to

r̃ =
L
∑

k=1
g∗kr̃k

and chooses s̃m to maximize the decision variable

µ(s̃m) = Re (r̃, s̃m)− Em

L
∑

k=1
|gk|2

• To evaluate the performance gain with MRC, we note that

r̃ =
L
∑

k=1
g∗k (gks̃m + ñk)

=





L
∑

k=1
α2
k



 s̃m +
L
∑

k=1
g∗kñk

≡ α2
Ms̃m + ñM , (1)

where α2
M =

∑L
k=1 α

2
k, ñM =

∑L
k=1 g

∗
kñk and α2

k = |gk|2.
• The first term in (1) is the signal component with average energy 1

2
E[α4

M‖s̃m‖2] = α4
MEav,

where Eav is the average symbol energy in the signal constellation.
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MRC Performance

• The second term is the noise component with variance (per dimension)

σ2
ñM

=
1

2N
E[‖ñM‖2] = No

L
∑

k=1
α2
k = Noα

2
M .

• The ratio of the two gives the symbol energy-to-noise ratio

γmr
s =

1
2
E[α4

M‖s̃m‖2]
σ2
ñM

=
α2
MEav

No
=

L
∑

k=1

α2
kEav

No
=

L
∑

k=1
γk

where γk = α2
kEav/No. Note that γ

mr
s is the sum of the symbol energy-to-noise ratios of the

L diversity branches.

• If the branches are balanced (which is a reasonable assumption with antenna diversity) and

uncorrelated, then γmr
b has a central chi-square distribution with 2L degrees of freedom

pγmr
b
(x) =

1

(L− 1)!(γ̄c)L
xL−1e−x/γ̄c , x ≥ 0

where

γ̄c = E[γk] k = 1, . . . , L

• The cdf of γmr
s is

Fγmr
s
(x) = 1− e−x/γ̄c

L−1
∑

k=0

1

k!





x

γ̄c





k

, x ≥ 0 .
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Performance of BPSK with MRC

• When computing the probability of bit error, we must limit our attention to coherent signaling

techniques since MRC is a coherent detection technique.

• The bit error probability with BPSK with L-branch diversity and MRC is

Pb =
∫ ∞
0

Pb(x)pγmr
b
(x)dx

=
∫ ∞
0

Q
(√

2x
) 1

(L− 1)!(γ̄c)L
xL−1e−x/γ̄c

=





1− µ

2





L L−1
∑

k=0







L− 1 + k

k











1 + µ

2





k

where

µ =

√

√

√

√

√

γ̄c
1 + γ̄c

• The last step follows after considerable algebra.

15



5.0 15.0 25.0 35.0
γ−

c (dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
b

L = 1
L = 2
L = 3
L = 4

Bit error probability for BPSK with maximal ratio combining against the average branch

bit energy-to-noise ratio.
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Optimum Combining

• Maximum ratio combining (MRC) maximizes the output signal-to-noise ratio (SNR) and is

the optimal combining method in a maximum likelihood sense for channels where the additive

impairment is additive white Gaussian noise.

• When the additive channel impairment is dominated by co-channel interference, it is better

to use optimum combining (OC) which is designed to maximize the output signal-to-

interference-plus-noise ratio (SINR).

– OC uses the spatial diversity not only to combat fading of the desired signal, as is the

case with MRC, but also to reduce the relative power of the interfering signals at the

receiver, such that the instantaneous SINR is maximized.

– This is achieved by exploiting the correlation of the interference across the multiple

receiver antenna elements.

– By combining the signals that are received by multiple antennas, OC can suppress the

interference and improve the output signal-to-interference-plus-noise ratio by several deci-

bels in interference dominant environments.
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Received Signal, Interference and Noise

• Consider a situation where a desired signal is received in the presence of K co-channel

interferers. The signal space dimensionality is assumed to be unity, i.e., N = 1, so that the

signal vectors are complex-valued scalars chosen from an appropriate constellation such as

M -QAM.

• The received signal scalars at the L receiver antennas are equal to

r̃k = gk,0s̃0 +
K
∑

i=1
gk,is̃i + ñk, k = 1, . . . , L ,

where s̃0, s̃i and ñk are the desired signal vector, i
th interfering signal vector, and noise vector,

respectively, and K is the number of interferers.

• The L received signal scalars can be stacked in a column to yield the L× 1 received vector

r̃t = g0s̃0 +
K
∑

i=1
gis̃i + ñ ,

where

r̃t = (r̃1, r̃2, . . . , r̃L)
T

gi = (gi,1, gi,2, . . . , gi,L)
T

ñ = (ñ1, ñ2, . . . , ñL)
T .
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Signal Correlations

• The L× L received desired-signal-plus-interference-plus noise correlation matrix is given by

Φr̃tr̃t =
1

2
Es̃0,s̃i,ñ









g0s̃0 +
K
∑

i=1
gis̃i + ñ







g0s̃0 +
K
∑

i=1
gis̃i + ñ





H




 ,

where ( · )H denotes complex conjugate transpose.

• Likewise, the received interference-plus-noise correlation matrix is given by

Φr̃ir̃i =
1

2
Es̃i,ñ











K
∑

i=1
gis̃i + ñ









K
∑

i=1
gis̃i + ñ





H




 .

• Note that the expectations are taken over a period that is much less than the channel coher-

ence time, i.e., several modulated symbol durations.

• If the desired signal, interfering signal, and noise vectors are mutually uncorrelated,

Φr̃tr̃t = g0g
H

0 Eav +
K
∑

i=1
gig

H

i E
i
av +NoI , (2)

and

Φr̃ir̃i =
K
∑

i=1
gig

H

i E
i
av +NoI ,

respectively, where I is the L × L identity matrix and Ei
av is the average energy in the ith

interfering signal. It is important to note that the matrices Φr̃tr̃t and Φr̃ir̃i will vary at the

channel fading rate.
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Optimum Combining and MMSE Solution

• The received signals scalars r̃k, k = 1, 2, . . . , L are multiplied by controllable weights wk and

summed together, i.e., the combiner output is

r̃ =
L
∑

k=1
wkr̃k = wT r̃t ,

where w = (w1, w2, . . . , wL)
T is the weight vector.

• Several approaches can be taken to find the optimal weight vector w. One approach is to

minimize the mean square error

J = E
[

‖r̃ − s̃0‖2
]

= E
[

‖wT r̃t − s̃0‖2
]

= 2wTΦr̃tr̃tw
∗ − 2Re {Φs̃0r̃tw

∗} − 2Eav ,

where Φr̃tr̃t is defined in (2) and

Φs̃0r̃t = E
[

s̃0r̃
H

t

]

= 2Eavg
H

0 .

• The weight vector that minimizes the mean square error can be obtained by setting the

gradient ∇wJ to zero. This gives the minimum mean square error (MMSE) solution

∇wJ =





∂J

∂w1
, · · · , ∂J

∂wL



 = 2wTΦr̃tr̃t − 2Φs̃0r̃t = 0 .

• The solution is

wopt = Φ−1
r̃tr̃t

ΦT

s̃0r̃t
= 2EavΦ

−1
r̃tr̃t

g∗
0 ,

where the fact that ΦT

s̃0r̃t
= 2g∗

0Eav was used.
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Optimum Combining and MMSE Solution

• Since Φr̃tr̃t = g0g
H

0 Eav +Φr̃ir̃i, it follows that

wopt = 2Eav

(

Φr̃ir̃i + g0g
H

0 Eav

)−1
g∗
0

= 2Eav

(

Φr̃ir̃i + g∗
0g

T

0Eav

)−1
g∗
0 . (3)

• Next, a variation of the matrix inversion lemma is applied

(A + uvH)−1 = A−1 − A−1uvHA−1

1 + vHA−1u

to (3) resulting in

wopt = 2Eav





Φ−1
r̃ir̃i

− EavΦ
−1
r̃ir̃i

g∗
0g

T

0Φ
−1
r̃ir̃i

1 + EavgT

0Φ
−1
r̃ir̃i

g∗
0





 g∗
0

= 2Eav







1

1 + EavgT

0Φ
−1
r̃ir̃i

g∗
0





 ·Φ−1
r̃ir̃i

g∗
0

= C ·Φ−1
r̃ir̃i

g∗
0 , (4)

where C = 2Eav/(1 + Eavg
T

0Φ
−1
r̃ir̃i

g∗
0) is a scalar.
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Optimum Combining and Maximum SINR Solution

• Another criterion for optimizing the weight vector is to maximize the instantaneous signal-

to-interference-plus-noise ratio (SINR) at the output of the combiner

ω =
wTg0g

H

0 Eavw
∗

wTΦ−1
r̃ir̃i

w∗ .

• Solving for the optimum weight vector gives

wopt = B ·Φ−1
r̃ir̃i

g∗
0 ,

where B is an arbitrary constant. Hence, the maximum instantaneous output SINR is

ω = Eavg
H

0 Φ
−1
r̃ir̃i

g0 .

• Note that the maximum instantaneous output SINR does not depend on the choice of the

scalar B. Therefore, the MMSE weight vector in (4) also maximizes the instantaneous output

SINR.

• When no interference is present, Φr̃ir̃i = NoI and the optimal weight vector becomes

wopt =
g∗
0

No
,

so that the combiner output is

r̃ =
L
∑

k=1

g∗0,k
No

r̃k .

– OC reduces to MRC when no interference is present.
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Performance of Optimum Combining

• To evaluate the performance of OC, several definitions are required as follows:

Ω =
average received desired signal power per antenna

average received noise plus interference power per antenna

γ̄c =
average received desired signal power per antenna

average received noise power per antenna
=

E[|g0,k|2]Eav

No

γ̄i =
average received ith interferer power per antenna

average received noise power per antenna
=

E[|gi,k|2]Ei
av

No

ωR =
instantaneous desired signal power at the array output

average noise plus interference power at the array output

ω =
instantaneous desired signal power at the array output

instantaneous noise plus interference power at the array output

• In the above definitions, “average” refers to the average over the Rayleigh fading, while

“instantaneous” refers to an average over a period that is much less than the channel coherence

time, i.e., several modulated symbol durations so that the channel is essentially static.

• Note that

Ω =
γ̄c

1 +
∑K
k=1 γ̄i

.
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Fading of the Desired Signal Only

• ωR is equal to

ωR = Eavg
H

0 Φ
−1
r̃ir̃i

g0 ,

where, with a single interferer,

Φr̃ir̃i = E1
avE[g1g

H

1 ] +NoI .

Note that the above expectation in is over the Rayleigh fading. The pdf of ωR is

pωR(x) =
e−x/γ̄c(x/γ̄c)

L−1(1 + Lγ̄1)

γ̄c(L− 2)!

∫ 1

0
e−((x/γ̄c)Lγ̄1)t(1− t)L−2dt (5)

and the cdf of ωR is

FωR(x) =
∫ x/γ̄c

0

e−yyL−1(1 + Lγ̄1)

(L− 2)!

∫ 1

0
e−(yLγ̄1)t(1− t)L−2dtdy . (6)

which are valid for L ≥ 2.

• Note that ωR in (5) and (6) is normalized by γ̄c. Since γ̄c = (1+ γ̄1)Ω for the case of a single

interferer, it is apparent that ωR can be normalized by Ω as well, i.e., replace x/γ̄c in the

above pdf and cdf with x/(1 + γ̄1)Ω. The normalization by Ω allows for a straight forward

comparison of OC and MRC.
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BER Performance

• The probability of bit error for coherently detected BPSK is given by

Pb =
∫ ∞
0

Q
(√

2x
)

pωR(x)dx

• Bogachev and Kieslev derived the bit error probability (for L ≥ 2) as

Pb =
(−1)L−1(1 + Lγ̄1)

2(Lγ̄1)L−1











− Lγ̄1
1 + Lγ̄1

+

√

√

√

√

√

γ̄c
1 + γ̄c

− 1

1 + Lγ̄1

√

√

√

√

√

γ̄c
1 + Lγ̄1 + γ̄c

−
L−2
∑

k=1
(−Lγ̄1)

k





1−
√

√

√

√

√

γ̄c
1 + γ̄c





1 +
k
∑

i=1

(2i− 1)!!

i!(2 + 2γ̄c)i























where

(2i− 1)!! = 1 · 3 · 5 · · · · · (2i− 1) .

• Simon and Alouini have derived the following expression which is valid for L ≥ 1:

Pb =
1

2











1−
√

√

√

√

√

γ̄c
1 + γ̄c

L−2
∑

k=0







2k

k







1

[4(1 + γ̄c)]k





1−


− 1

Lγ̄1





L−1−k






−
√

√

√

√

√

γ̄c
1 + Lγ̄1 + γ̄c



− 1

Lγ̄1





L−1









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Fading of the Desired and Interfering Signals

• The maximum instantaneous output SINR is equal to

ω = Eavg
H

0 Φ
−1
r̃ir̃i

g0 ,

where, with a single interferer,

Φr̃ir̃i = E1
avg1g

H

1 +NoI .

In this case, the matrix Φr̃ir̃i varies at the fading rate.

• Using eigenvalue decomposition, the probability of bit error with coherent BPSK is

Pb =
∫ ∞
0

Pb|γ1(x)pγ1(x)dx
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Comparison of the bit error probability for coherent BPSK and optimal combining for a

non-faded interferer and a faded interferer; the performance is almost identical.
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