EE6604

Personal & Mobile Communications

Week 14

MIMO Channels

Alamouti Space-time Coding

Spatial Multiplexing

Reading: 6.10, 6.11, 6.12

MIMO Channels

• A multiple-input multiple-output (MIMO) system is one that consists of multiple transmit and receive antennas.

MIMO system with multiple transmit and multiple receiver antennas.

MIMO Channels

• For a system consisting of L_t transmit and L_r receive antennas, the channel can be described by $L_t \times L_r$ matrix

$$\mathbf{G}(t,\tau) = \begin{bmatrix} g_{1,1}(t,\tau) & g_{1,2}(t,\tau) & \cdots & g_{1,L_t}(t,\tau) \\ g_{2,1}(t,\tau) & g_{2,2}(t,\tau) & \cdots & g_{2,L_t}(t,\tau) \\ \vdots & \vdots & & \vdots \\ g_{L_r,1}(t,\tau) & g_{L_r,2}(t,\tau) & \cdots & g_{L_r,L_t}(t,\tau) \end{bmatrix} ,$$

- $-g_{qp}(t,\tau)$ denotes the time-varying sub-channel impulse response between the *p*th transmitter antenna and *q*th receiver antenna.
- Suppose that the complex envelopes of the signals transmitted from the L_t transmit antennas are:

$$\tilde{\mathbf{s}}(t) = (\tilde{s}_1(t), \tilde{s}_2(t), \dots, \tilde{s}_{L_t}(t))^{\mathrm{T}}$$

where $\tilde{s}_p(t)$ is the signal transmitted from the *p*th transmit antenna.

• Let

$$\tilde{\mathbf{r}}(t) = (\tilde{r}_1(t), \tilde{r}_2(t), \dots, \tilde{r}_{L_r}(t))^{\mathrm{T}}$$

denote the vector of received complex envelopes, where $\tilde{r}_q(t)$ is the signal received at the qth receiver antenna. Then

$$\tilde{\mathbf{r}}(t) = \int_0^t \mathbf{G}(t,\tau) \tilde{\mathbf{s}}(t-\tau) d\tau$$

MIMO Channels - Special Cases

• Under conditions of flat fading

$$\mathbf{G}(t,\tau) = \mathbf{G}(t)\delta(\tau - \hat{\tau}) \;\;,$$

where $\hat{\tau}$ is the delay through the channel and

$$\tilde{\mathbf{r}}(t) = \mathbf{G}(t)\tilde{\mathbf{s}}(t-\hat{\tau})$$
.

• If the MIMO channel is characterized by slow fading, then

$$\tilde{\mathbf{r}}(t) = \int_0^t \mathbf{G}(\tau) \tilde{\mathbf{s}}(t-\tau) d\tau$$

- In this case, the channel matrix $\mathbf{G}(\tau)$ remains constant over the duration of the transmitted waveform $\tilde{\mathbf{s}}(t)$, but can vary from one channel use to the next, where a channel use may be defined as the transmission of either a single modulated symbol or a vector of modulated symbols.
- Sometimes this is called a randomly static channel or a block fading channel.
- Finally, if the MIMO channel is characterized by slow flat fading, then

$$\tilde{\mathbf{r}}(t) = \mathbf{G}\tilde{\mathbf{s}}(t)$$
 .

MIMO Channel Models - Classification

- MIMO channel models can be classified as either *physical* or *analytical* models.
- The analytical models characterize the MIMO sub-channel impulse responses in a mathematical manner without explicitly considering the underlying electromagnetic wave propagation.
 - Analytical MIMO channel models are most often used under slowly and flat fading conditions.
 - The various analytical models generate the MIMO matrices as realizations of complex Gaussian random variables having specified means and correlations.
 - To model Rician fading, the channel matrix can be divided into a deterministic part and a random part, i.e.,

$$\mathbf{G} = \sqrt{\frac{K}{K+1}}\bar{\mathbf{G}} + \sqrt{\frac{1}{K+1}}\mathbf{G}_s$$

where $E[\mathbf{G}] = \sqrt{\frac{K}{K+1}} \overline{\mathbf{G}}$ is the LoS or specular component and $\sqrt{\frac{K}{K+1}} \mathbf{G}_s$. is the scatter component assumed to have zero-mean.

- To simply our further characterization of the MIMO channel, assume for the time being that K = 0, so that $\mathbf{G} = \mathbf{G}_s$.

i.i.d. MIMO Channel Model

- The simplest MIMO model assumes that the entries of the matrix **G** are independent and identically distributed (i.i.d) complex Gaussian random variables.
 - This model corresponds to the so called "rich scattering" or spatially white environment.
 - Such an independence assumption simplifies the performance analysis of various digital signaling schemes operating on MIMO channels.
 - In reality the sub-channels will be correlated and, therefore, the i.i.d. model will lead to optimistic performance estimates.
 - A variety of more sophisticate models have been introduced to account for spatial correlation of the sub-channels.

Correlated MIMO Channel Models

• Consider the vector $\mathbf{g} = \operatorname{vec}{\mathbf{G}}$ where

$$\mathbf{G} = [\mathbf{g}_1, \mathbf{g}_2, \dots, \mathbf{g}_{L_t}], \ \mathbf{g}_j = (g_{1,j}, g_{2,j}, \dots, g_{L_r,j})^{\mathrm{T}}$$

and

$$\operatorname{vec}{\mathbf{G}} = [\mathbf{g}_1^{\mathrm{T}}, \mathbf{g}_2^{\mathrm{T}}, \dots, \mathbf{g}_{L_t}^{\mathrm{T}}]^{\mathrm{T}}$$

- The vector \mathbf{g} is a column vector of length $n = L_t L_r$. The vector \mathbf{g} is zero-mean complex Gaussian random vector and its statistics are fully specified by the $n \times n$ covariance matrix $\mathbf{R}_G = \mathrm{E}[\mathbf{g}\mathbf{g}^{\mathrm{H}}]$, where \mathbf{g}^{H} is the complex conjugate transpose of \mathbf{g} .
- Hence, $\mathbf{g} \sim \mathcal{CN}(\mathbf{0}, \mathbf{R}_G)$ and, if \mathbf{R}_G is invertible, the probability density function of \mathbf{g} is

$$p(\mathbf{g}) = \frac{1}{(2\pi)^n \det(\mathbf{R}_G)} e^{-\frac{1}{2}\mathbf{g}^{\mathrm{H}}\mathbf{R}_G^{-1}\mathbf{g}} , \quad \mathbf{g} \in \mathcal{C}^n .$$

• Realizations of the MIMO channel with the above distribution can be generated by

$$\mathbf{G} = \operatorname{unvec}(\mathbf{g}) \quad \text{with} \quad \mathbf{g} = \mathbf{R}_G^{1/2} \mathbf{w}$$

Here, $\mathbf{R}_{G}^{1/2}$ is any matrix square root of \mathbf{R}_{G} , i.e., $\mathbf{R}_{G} = \mathbf{R}_{G}^{1/2} (\mathbf{R}_{G}^{1/2})^{\mathrm{H}}$, and \mathbf{w} is a length n vector where $\mathbf{w} \sim \mathcal{CN}(\mathbf{0}, \mathbf{I})$.

Correlated MIMO Channel Models

- To find the square root of the matrix \mathbf{R}_{G} , we can use eigenvalue decomposition.
- Note that the matrix \mathbf{R}_G is Hermitian, i.e., $\mathbf{R}_G = \mathbf{R}_G^{\mathrm{H}}$.
- It follows that \mathbf{R}_G has the eigenvalue decomposition $\mathbf{R}_G = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{H}}$, where \mathbf{U} is a unitary matrix, i.e., $\mathbf{U} \mathbf{U}^{\mathrm{H}} = \mathbf{I}$.
- Then we have $\mathbf{R}_G^{1/2} = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\mathrm{H}}$
- To verify this solution, we note that

$$\mathbf{R}_G = \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\mathrm{H}} \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\mathrm{H}}$$
$$= \mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{\Lambda}^{1/2} \mathbf{U}^{\mathrm{H}}$$
$$= \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{H}}$$

• To find the matrix \mathbf{U} , we formulate

 $\mathbf{R}_{G}\mathbf{u}=\lambda\mathbf{u}$

and solve for λ and \mathbf{u} . This can be done by solving the N (assuming matrix \mathbf{R}_G is full rank) roots of the polynomial

$$p(\lambda) = \det(\mathbf{R}_G - \lambda \mathbf{I}) = 0$$

• For each solution λ_i , we have the specific eigenvalue equation which we solve for **u**

$$(\mathbf{R}_G - \lambda \mathbf{I})\mathbf{u} = \mathbf{0}$$

Kronecker Model

- The Kronecker model assumes that the spatial correlation at the transmitter and receiver is separable.
- This is equivalent to restricting the correlation matrix \mathbf{R}_H to have the Kronecker product form

$$\mathbf{R}_G = \mathbf{R}_T \otimes \mathbf{R}_R$$

where

$$\mathbf{R}_T = \mathrm{E}[\mathbf{G}^{\mathrm{H}}\mathbf{G}] \qquad \mathbf{R}_R = \mathrm{E}[\mathbf{G}\mathbf{G}^{\mathrm{H}}] \;.$$

are the $L_t \times L_t$ and $L_r \times L_r$ transmit and receive correlation matrices respectively, and \otimes is the "Kronecker product."

– For example, the Kronecker product of an $n \times n$ matrix **A** and an $m \times m$ matrix **B** would be

$$\mathbf{A} \otimes \mathbf{B} = \left[egin{array}{ccc} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \\ a_{n1}\mathbf{B} & \cdots & a_{nn}\mathbf{B} \end{array}
ight]$$

• Under the above Kronecker assumption,

$$\mathbf{g} = \left(\mathbf{R}_T \otimes \mathbf{R}_R\right)^{1/2} \mathbf{w}$$

and

$$\mathbf{G} = \mathbf{R}_R^{1/2} \mathbf{W} \mathbf{R}_T^{1/2} ,$$

where **W** is an $L_r \times L_t$ matrix consisting of i.i.d. zero mean complex Gaussian random variables.

Kronecker Model

• If the elements of **G** could be arbitrarily selected, then the correlation functions would be a function of four sub-channel index parameters, i.e.,

$$\mathbf{E}[g_{qp}g^*_{\tilde{q}\tilde{p}}] = \phi(q, p, \tilde{q}, \tilde{p})$$

where g_{qp} is the channel between the *p*th transmit and *q*th receive antenna.

- However, due to the Kronecker property, $\mathbf{R}_G = \mathbf{R}_T \otimes \mathbf{R}_R$, the elements of **G** are structured.
- One implication of the Kronecker property is "spatial" stationarity

$$\mathbf{E}[g_{qp}g^*_{\tilde{q}\tilde{p}}] = \phi(q - \tilde{q}, p - \tilde{p}) \;\;,$$

which implies that the sub-channel correlations are determined not by their position in the matrix \mathbf{G} , but by their positional difference.

• In addition, to the stationary property, manipulation of the Kronecker product form in $\mathbf{R}_G = \mathbf{R}_T \otimes \mathbf{R}_R$ implies that

$$\mathbf{E}[g_{qp}g^*_{\tilde{q}\tilde{p}}] = \phi(q - \tilde{q}, p - \tilde{p}) = \phi_R(q - \tilde{q}) \cdot \phi_T(p - \tilde{p}) ,$$

meaning that the correlation can be separated into two parts: a transmitter part and a receiver part, and both parts are stationary.

• Finally, it can be shown that the Kronecker property, $\mathbf{R}_G = \mathbf{R}_T \otimes \mathbf{R}_R$, holds if and only if the above separable property holds.

Weichselberger Model

- The Weichselberger model overcomes the separable requirement of the channel correlation functions of the Kronecker model.
- Consider the eigenvalue decomposition of the transmitter and receiver correlation matrices,

$$\mathbf{R}_T = \mathbf{U}_T \mathbf{\Lambda}_T \mathbf{U}_T^{\mathrm{H}}$$
$$\mathbf{R}_R = \mathbf{U}_R \mathbf{\Lambda}_R \mathbf{U}_R^{\mathrm{H}}$$

- Λ_T and Λ_R are diagonal matrices containing the eigenvalues of, and \mathbf{U}_T and \mathbf{U}_R are unity matrices containing the eigenvectors of, \mathbf{R}_T and \mathbf{R}_R .
- The Weichselberger model constructs the matrix ${f G}$ as

$$\mathbf{G} = \mathbf{U}_R \left(\tilde{\mathbf{\Omega}} \odot \mathbf{W}
ight) \mathbf{U}_T^{\mathrm{T}} \; ,$$

where \mathbf{W} is an $L_r \times L_t$ matrix consisting of i.i.d. zero mean complex Gaussian random variables and \odot denotes the Schur-Hadamard product (element-wise matrix multiplication), and $\mathbf{\Omega}$ is an $L_r \times L_t$ coupling matrix whose non-negative real values determine the average power coupling between the transmitter and receiver eigenvectors. The matrix $\mathbf{\tilde{\Omega}}$ is the element-wise square root of $\mathbf{\Omega}$.

• The Kronecker model is a special case of the Weichselberger model obtained with the coupling matrix $\Omega = \lambda_R \lambda_T^T$, where λ_R and λ_T are column vectors containing the eigenvalues of Λ_T and Λ_R , respectively.

Transmit Diversity - Almouti Scheme

- **Transmitter diversity** uses multiple transmit antennas to provide the receiver with multiple uncorrelated replicas of the same signal.
- The complexity of having multiple antenna is placed on the transmitter which may be shared among many receivers.
- Transmit diversity schemes require three functions:
 - encoding and transmission of the information sequence at the transmitter
 - combining scheme at the receiver
 - decision rule for making decisions
- We consider a simple repetition transmit diversity scheme with maximum likelihood combining at the receiver. This is the Alamouti transmit diversity scheme.

Space-time diversity receiver for 2×1 diversity.

• The received complex vectors are

$$\tilde{\mathbf{r}}_{(1)} = g_1 \tilde{\mathbf{s}}_{(1)} + g_2 \tilde{\mathbf{s}}_{(2)} + \tilde{\mathbf{n}}_{(1)} \tilde{\mathbf{r}}_{(2)} = -g_1 \tilde{\mathbf{s}}_{(2)}^* + g_2 \tilde{\mathbf{s}}_{(1)}^* + \tilde{\mathbf{n}}_{(2)}$$

 $\tilde{\mathbf{r}}_{(1)}$ and $\tilde{\mathbf{r}}_{(2)}$ represent the received vectors at time t and t + T, respectively, and $\tilde{\mathbf{n}}_{(1)}$ and $\tilde{\mathbf{n}}_{(2)}$ are the corresponding noise vectors.

• The combiner constructs the following two signal vectors

$$\tilde{\mathbf{v}}_{(1)} = g_1^* \tilde{\mathbf{r}}_{(1)} + g_2 \tilde{\mathbf{r}}_{(2)}^* \tilde{\mathbf{v}}_{(2)} = g_2^* \tilde{\mathbf{r}}_{(1)} - g_1 \tilde{\mathbf{r}}_{(2)}^*$$

Afterwards, the receiver applies the vectors $\tilde{\mathbf{v}}_{(1)}$ and $\tilde{\mathbf{v}}_{(2)}$ in a sequential fashion to the metric computer, to make decisions on the symbols $\tilde{\mathbf{s}}_{(1)}$ and $\tilde{\mathbf{s}}_{(2)}$ by maximizing the two respective decision variables

$$\mu(\tilde{\mathbf{s}}_{(1),m}) = \operatorname{Re}\left\{\tilde{\mathbf{v}}_{(1)} \cdot \tilde{\mathbf{s}}_{(1),m}^*\right\} - E_m(|g_1|^2 + |g_2|^2)$$

$$\mu(\tilde{\mathbf{s}}_{(2),m}) = \operatorname{Re}\left\{\tilde{\mathbf{v}}_{(2)} \cdot \tilde{\mathbf{s}}_{(2),m}^*\right\} - E_m(|g_1|^2 + |g_2|^2)$$

 \bullet We have

$$\tilde{\mathbf{v}}_{(1)} = (\alpha_1^2 + \alpha_2^2) \tilde{\mathbf{s}}_{(1)} + g_1^* \tilde{\mathbf{n}}_{(1)} + g_2 \tilde{\mathbf{n}}_{(2)}^* \tilde{\mathbf{v}}_{(2)} = (\alpha_1^2 + \alpha_2^2) \tilde{\mathbf{s}}_{(2)} - g_1 \tilde{\mathbf{n}}_{(2)}^* + g_2^* \tilde{\mathbf{n}}_{(1)}$$

• Compare with MRC

– With 1×2 diversity and MRC

$$\tilde{\mathbf{r}} = g_1^* \tilde{\mathbf{r}}_1 + g_2^* \tilde{\mathbf{r}}_2 = (\alpha_1^2 + \alpha_2^2) \tilde{\mathbf{s}}_m + g_1^* \tilde{\mathbf{n}}_1 + g_2^* \tilde{\mathbf{n}}_2$$

- The combined signals in each case are the same. The only difference is the phase rotations of the noise vectors which will not change the error probability.
- However, with transmit diversity the transmit power must be split between two transmit antennas. Hence, 2×1 diversity is 3 dB less power efficient than 1×2 diversity.

Space-time diversity receiver for 2×2 diversity.

Spatial Multiplexing

- In certain types of wireless systems, particularly those using time division duplexing (TDD), knowledge of the channel **G** is available at both the transmitter and receiver. In this case, as singular value decomposition (SVD) of the channel matrix **G** may be performed.
- Suppose that the channel matrix **G** has rank r which is at most min $\{L_T, L_R\}$. Then

$\mathbf{G} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{H}$

where **U** is an $L_R \times r$ matrix, **V** is an $L_T \times r$ matrix, and **A** is an $r \times r$ diagonal matrix, such that the diagonal elements $\lambda_1, \lambda_2, \ldots, \lambda_r$ are the singular values of the channel matrix **G**.

• The matrices **U** and **V** are unitary matrices, meaning that $\mathbf{U}\mathbf{U}^{H} = \mathbf{I}_{r \times r}$ and $\mathbf{V}\mathbf{V}^{H} = \mathbf{I}_{r \times r}$ where $\mathbf{I}_{r \times r}$ is the $r \times r$ identity matrix.

Spatial Multiplexing (cont'd)

• Given knowledge that the channel matrix **G** has rank r at the transmitter, r symbols are sent over the channel. The $r \times 1$ transmitted signal vector $\tilde{\mathbf{s}}$ is precoded at the transmitter by using the linear transformation

$$\tilde{\mathbf{s}}_p = \mathbf{V}\tilde{\mathbf{s}}$$

and transmitted from the L_T transmit antennas.

• The corresponding received signal vector across the L_R receiver antennas is

$$\tilde{\mathbf{r}} = \mathbf{G}\tilde{\mathbf{s}}_p + \tilde{\mathbf{n}} = \mathbf{G}\mathbf{V}\tilde{\mathbf{s}} + \tilde{\mathbf{n}}$$
 .

• At the receiver, the received signal vector $\tilde{\mathbf{r}}$ is processed by the linear transformation \mathbf{U}^{H} as follows:

$$\hat{\mathbf{s}} = \mathbf{U}^{H} \tilde{\mathbf{r}}$$

 $= \mathbf{U}^{H} \mathbf{G} \mathbf{V} \tilde{\mathbf{s}} + \mathbf{U}^{H} \tilde{\mathbf{n}}$
 $= \mathbf{U}^{H} \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{H} \mathbf{V} \tilde{\mathbf{s}} + \mathbf{U}^{H} \tilde{\mathbf{n}}$
 $= \mathbf{\Lambda} \tilde{\mathbf{s}} + \mathbf{U}^{H} \tilde{\mathbf{n}}$.

• Multiplication of the noise vector $\tilde{\mathbf{n}}$ by the unitary matrix \mathbf{U}^H does not alter the statistics of the noise vector. Due to the multiplication of each transmitted symbol \tilde{s}_k by the corresponding singular value λ_k , the r data streams will have different received bit energy-to-noise ratios depending on the particular channel realization.