EE6604

Personal \& Mobile Communications

Week 14

MIMO Channels

Alamouti Space-time Coding
Spatial Multiplexing
Reading: 6.10, 6.11, 6.12

MIMO Channels

- A multiple-input multiple-output (MIMO) system is one that consists of multiple transmit and receive antennas.

MIMO system with multiple transmit and multiple receiver antennas.

MIMO Channels

- For a system consisting of L_{t} transmit and L_{r} receive antennas, the channel can be described by $L_{t} \times L_{r}$ matrix

$$
\mathbf{G}(t, \tau)=\left[\begin{array}{cccc}
g_{1,1}(t, \tau) & g_{1,2}(t, \tau) & \cdots & g_{1, L_{t}}(t, \tau) \\
g_{2,1}(t, \tau) & g_{2,2}(t, \tau) & \cdots & g_{2, L_{t}}(t, \tau) \\
\vdots & \vdots & & \vdots \\
g_{L_{r}, 1}(t, \tau) & g_{L_{r}, 2}(t, \tau) & \cdots & g_{L_{r}, L_{t}}(t, \tau)
\end{array}\right]
$$

- $g_{q p}(t, \tau)$ denotes the time-varying sub-channel impulse response between the p th transmitter antenna and q th receiver antenna.
- Suppose that the complex envelopes of the signals transmitted from the L_{t} transmit antennas are:

$$
\tilde{\mathbf{s}}(t)=\left(\tilde{s}_{1}(t), \tilde{s}_{2}(t), \ldots, \tilde{s}_{L_{t}}(t)\right)^{\mathrm{T}}
$$

where $\tilde{s}_{p}(t)$ is the signal transmitted from the p th transmit antenna.

- Let

$$
\tilde{\mathbf{r}}(t)=\left(\tilde{r}_{1}(t), \tilde{r}_{2}(t), \ldots, \tilde{r}_{L_{r}}(t)\right)^{\mathrm{T}}
$$

denote the vector of received complex envelopes, where $\tilde{r}_{q}(t)$ is the signal received at the q th receiver antenna. Then

$$
\tilde{\mathbf{r}}(t)=\int_{0}^{t} \mathbf{G}(t, \tau) \tilde{\mathbf{s}}(t-\tau) d \tau
$$

MIMO Channels - Special Cases

- Under conditions of flat fading

$$
\mathbf{G}(t, \tau)=\mathbf{G}(t) \delta(\tau-\hat{\tau})
$$

where $\hat{\tau}$ is the delay through the channel and

$$
\tilde{\mathbf{r}}(t)=\mathbf{G}(t) \tilde{\mathbf{s}}(t-\hat{\tau}) .
$$

- If the MIMO channel is characterized by slow fading, then

$$
\tilde{\mathbf{r}}(t)=\int_{0}^{t} \mathbf{G}(\tau) \tilde{\mathbf{s}}(t-\tau) d \tau .
$$

- In this case, the channel matrix $\mathbf{G}(\tau)$ remains constant over the duration of the transmitted waveform $\tilde{\mathbf{s}}(t)$, but can vary from one channel use to the next, where a channel use may be defined as the transmission of either a single modulated symbol or a vector of modulated symbols.
- Sometimes this is called a randomly static channel or a block fading channel.
- Finally, if the MIMO channel is characterized by slow flat fading, then

$$
\tilde{\mathbf{r}}(t)=\mathbf{G} \tilde{\mathbf{s}}(t) .
$$

MIMO Channel Models - Classification

- MIMO channel models can be classified as either physical or analytical models.
- The analytical models characterize the MIMO sub-channel impulse responses in a mathematical manner without explicitly considering the underlying electromagnetic wave propagation.
- Analytical MIMO channel models are most often used under slowly and flat fading conditions.
- The various analytical models generate the MIMO matrices as realizations of complex Gaussian random variables having specified means and correlations.
- To model Rician fading, the channel matrix can be divided into a deterministic part and a random part, i.e.,

$$
\mathbf{G}=\sqrt{\frac{K}{K+1}} \overline{\mathbf{G}}+\sqrt{\frac{1}{K+1}} \mathbf{G}_{s}
$$

where $\mathrm{E}[\mathbf{G}]=\sqrt{\frac{K}{K+1}} \overline{\mathbf{G}}$ is the LoS or specular component and $\sqrt{\frac{K}{K+1}} \mathbf{G}_{s}$. is the scatter component assumed to have zero-mean.

- To simply our further characterization of the MIMO channel, assume for the time being that $K=0$, so that $\mathbf{G}=\mathbf{G}_{s}$.

i.i.d. MIMO Channel Model

- The simplest MIMO model assumes that the entries of the matrix \mathbf{G} are independent and identically distributed (i.i.d) complex Gaussian random variables.
- This model corresponds to the so called "rich scattering" or spatially white environment.
- Such an independence assumption simplifies the performance analysis of various digital signaling schemes operating on MIMO channels.
- In reality the sub-channels will be correlated and, therefore, the i.i.d. model will lead to optimistic performance estimates.
- A variety of more sophisticate models have been introduced to account for spatial correlation of the sub-channels.

Correlated MIMO Channel Models

- Consider the vector $\mathbf{g}=\operatorname{vec}\{\mathbf{G}\}$ where

$$
\mathbf{G}=\left[\mathbf{g}_{1}, \mathbf{g}_{2}, \ldots, \mathbf{g}_{L_{t}}\right], \quad \mathbf{g}_{j}=\left(g_{1, j}, g_{2, j}, \ldots, g_{L_{r}, j}\right)^{\mathrm{T}}
$$

and

$$
\operatorname{vec}\{\mathbf{G}\}=\left[\mathbf{g}_{1}^{\mathrm{T}}, \mathbf{g}_{2}^{\mathrm{T}}, \ldots, \mathbf{g}_{L_{t}}^{\mathrm{T}}\right]^{\mathrm{T}} .
$$

- The vector \mathbf{g} is a column vector of length $n=L_{t} L_{r}$. The vector \mathbf{g} is zero-mean complex Gaussian random vector and its statistics are fully specified by the $n \times n$ covariance matrix $\mathbf{R}_{G}=\mathrm{E}\left[\mathbf{g g}^{\mathrm{H}}\right]$, where \mathbf{g}^{H} is the complex conjugate transpose of \mathbf{g}.
- Hence, $\mathbf{g} \sim \mathcal{C N}\left(\mathbf{0}, \mathbf{R}_{G}\right)$ and, if \mathbf{R}_{G} is invertible, the probability density function of \mathbf{g} is

$$
p(\mathbf{g})=\frac{1}{(2 \pi)^{n} \operatorname{det}\left(\mathbf{R}_{G}\right)} e^{-\frac{1}{2} \mathbf{g}^{\mathbf{H}} \mathbf{R}_{G}^{-1} \mathbf{g}}, \quad \mathbf{g} \in \mathcal{C}^{n}
$$

- Realizations of the MIMO channel with the above distribution can be generated by

$$
\mathbf{G}=\operatorname{unvec}(\mathbf{g}) \quad \text { with } \quad \mathbf{g}=\mathbf{R}_{G}^{1 / 2} \mathbf{w}
$$

Here, $\mathbf{R}_{G}^{1 / 2}$ is any matrix square root of \mathbf{R}_{G}, i.e., $\mathbf{R}_{G}=\mathbf{R}_{G}^{1 / 2}\left(\mathbf{R}_{G}^{1 / 2}\right)^{\mathrm{H}}$, and \mathbf{w} is a length n vector where $\mathbf{w} \sim \mathcal{C N}(\mathbf{0}, \mathbf{I})$.

Correlated MIMO Channel Models

- To find the square root of the matrix \mathbf{R}_{G}, we can use eigenvalue decomposition.
- Note that the matrix \mathbf{R}_{G} is Hermitian, i.e., $\mathbf{R}_{G}=\mathbf{R}_{G}^{\mathrm{H}}$.
- It follows that \mathbf{R}_{G} has the eigenvalue decomposition $\mathbf{R}_{G}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}$, where \mathbf{U} is a unitary matrix, i.e., $\mathbf{U U}^{H}=\mathbf{I}$.
- Then we have $\mathbf{R}_{G}^{1 / 2}=\mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\mathrm{H}}$
- To verify this solution, we note that

$$
\begin{aligned}
\mathbf{R}_{G} & =\mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\mathrm{H}} \mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\mathrm{H}} \\
& =\mathbf{U} \boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2} \mathbf{U}^{\mathrm{H}} \\
& =\mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathrm{H}}
\end{aligned}
$$

- To find the matrix \mathbf{U}, we formulate

$$
\mathbf{R}_{G} \mathbf{u}=\lambda \mathbf{u}
$$

and solve for λ and \mathbf{u}. This can be done by solving the N (assuming matrix \mathbf{R}_{G} is full rank) roots of the polynomial

$$
p(\lambda)=\operatorname{det}\left(\mathbf{R}_{G}-\lambda \mathbf{I}\right)=0
$$

- For each solution λ_{i}, we have the specific eigenvalue equation which we solve for \mathbf{u}

$$
\left(\mathbf{R}_{G}-\lambda \mathbf{I}\right) \mathbf{u}=\mathbf{0}
$$

Kronecker Model

- The Kronecker model assumes that the spatial correlation at the transmitter and receiver is separable.
- This is equivalent to restricting the correlation matrix \mathbf{R}_{H} to have the Kronecker product form

$$
\mathbf{R}_{G}=\mathbf{R}_{T} \otimes \mathbf{R}_{R}
$$

where

$$
\mathbf{R}_{T}=\mathrm{E}\left[\mathbf{G}^{\mathrm{H}} \mathbf{G}\right] \quad \mathbf{R}_{R}=\mathrm{E}\left[\mathbf{G G}^{\mathrm{H}}\right] .
$$

are the $L_{t} \times L_{t}$ and $L_{r} \times L_{r}$ transmit and receive correlation matrices respectively, and \otimes is the "Kronecker product."

- For example, the Kronecker product of an $n \times n$ matrix \mathbf{A} and an $m \times m$ matrix \mathbf{B} would be

$$
\mathbf{A} \otimes \mathbf{B}=\left[\begin{array}{ccc}
a_{11} \mathbf{B} & \cdots & a_{1 n} \mathbf{B} \\
a_{n 1} \mathbf{B} & \cdots & a_{n n} \mathbf{B}
\end{array}\right]
$$

- Under the above Kronecker assumption,

$$
\mathbf{g}=\left(\mathbf{R}_{T} \otimes \mathbf{R}_{R}\right)^{1 / 2} \mathbf{w}
$$

and

$$
\mathbf{G}=\mathbf{R}_{R}^{1 / 2} \mathbf{W} \mathbf{R}_{T}^{1 / 2}
$$

where \mathbf{W} is an $L_{r} \times L_{t}$ matrix consisting of i.i.d. zero mean complex Gaussian random variables.

Kronecker Model

- If the elements of \mathbf{G} could be arbitrarily selected, then the correlation functions would be a function of four sub-channel index parameters, i.e.,

$$
\mathrm{E}\left[g_{q p} g_{\tilde{q} \tilde{p}}^{*}\right]=\phi(q, p, \tilde{q}, \tilde{p})
$$

where $g_{q p}$ is the channel between the p th transmit and q th receive antenna.

- However, due to the Kronecker property, $\mathbf{R}_{G}=\mathbf{R}_{T} \otimes \mathbf{R}_{R}$, the elements of \mathbf{G} are structured.
- One implication of the Kronecker property is "spatial" stationarity

$$
\mathrm{E}\left[g_{q p} g_{\tilde{q} \tilde{p}}^{*}\right]=\phi(q-\tilde{q}, p-\tilde{p}),
$$

which implies that the sub-channel correlations are determined not by their position in the matrix \mathbf{G}, but by their positional difference.

- In addition, to the stationary property, manipulation of the Kronecker product form in $\mathbf{R}_{G}=\mathbf{R}_{T} \otimes \mathbf{R}_{R}$ implies that

$$
\mathrm{E}\left[g_{q p} g_{\tilde{q} \bar{p}}^{*}\right]=\phi(q-\tilde{q}, p-\tilde{p})=\phi_{R}(q-\tilde{q}) \cdot \phi_{T}(p-\tilde{p}),
$$

meaning that the correlation can be separated into two parts: a transmitter part and a receiver part, and both parts are stationary.

- Finally, it can be shown that the Kronecker property, $\mathbf{R}_{G}=\mathbf{R}_{T} \otimes \mathbf{R}_{R}$, holds if and only if the above separable property holds.

Weichselberger Model

- The Weichselberger model overcomes the separable requirement of the channel correlation functions of the Kronecker model.
- Consider the eigenvalue decomposition of the transmitter and receiver correlation matrices,

$$
\begin{aligned}
& \mathbf{R}_{T}=\mathbf{U}_{T} \boldsymbol{\Lambda}_{T} \mathbf{U}_{T}^{\mathrm{H}} \\
& \mathbf{R}_{R}=\mathbf{U}_{R} \boldsymbol{\Lambda}_{R} \mathbf{U}_{R}^{\mathrm{H}}
\end{aligned}
$$

$-\boldsymbol{\Lambda}_{T}$ and $\boldsymbol{\Lambda}_{R}$ are diagonal matrices containing the eigenvalues of, and \mathbf{U}_{T} and \mathbf{U}_{R} are unity matrices containing the eigenvectors of, \mathbf{R}_{T} and \mathbf{R}_{R}.

- The Weichselberger model constructs the matrix \mathbf{G} as

$$
\mathbf{G}=\mathbf{U}_{R}(\tilde{\boldsymbol{\Omega}} \odot \mathbf{W}) \mathbf{U}_{T}^{\mathrm{T}},
$$

where \mathbf{W} is an $L_{r} \times L_{t}$ matrix consisting of i.i.d. zero mean complex Gaussian random variables and \odot denotes the Schur-Hadamard product (element-wise matrix multiplication), and $\boldsymbol{\Omega}$ is an $L_{r} \times L_{t}$ coupling matrix whose non-negative real values determine the average power coupling between the transmitter and receiver eigenvectors. The matrix $\tilde{\Omega}$ is the element-wise square root of $\boldsymbol{\Omega}$.

- The Kronecker model is a special case of the Weichselberger model obtained with the coupling matrix $\boldsymbol{\Omega}=\boldsymbol{\lambda}_{R} \boldsymbol{\lambda}_{T}^{\mathrm{T}}$, where $\boldsymbol{\lambda}_{R}$ and $\boldsymbol{\lambda}_{T}$ are column vectors containing the eigenvalues of $\boldsymbol{\Lambda}_{T}$ and $\boldsymbol{\Lambda}_{R}$, respectively.

Transmit Diversity - Almouti Scheme

- Transmitter diversity uses multiple transmit antennas to provide the receiver with multiple uncorrelated replicas of the same signal.
- The complexity of having multiple antenna is placed on the transmitter which may be shared among many receivers.
- Transmit diversity schemes require three functions:
- encoding and transmission of the information sequence at the transmitter
- combining scheme at the receiver
- decision rule for making decisions
- We consider a simple repetition transmit diversity scheme with maximum likelihood combining at the receiver. This is the Alamouti transmit diversity scheme.

Space-time diversity receiver for 2×1 diversity.

- The received complex vectors are

$$
\begin{aligned}
\tilde{\mathbf{r}}_{(1)} & =g_{1} \tilde{\mathbf{s}}_{(1)}+g_{2} \tilde{\mathbf{s}}_{(2)}+\tilde{\mathbf{n}}_{(1)} \\
\tilde{\mathbf{r}}_{(2)} & =-g_{1} \tilde{\mathbf{s}}_{(2)}^{*}+g_{2} \tilde{\mathbf{s}}_{(1)}^{*}+\tilde{\mathbf{n}}_{(2)}
\end{aligned}
$$

$\tilde{\mathbf{r}}_{(1)}$ and $\tilde{\mathbf{r}}_{(2)}$ represent the received vectors at time t and $t+T$, respectively, and $\tilde{\mathbf{n}}_{(1)}$ and $\tilde{\mathbf{n}}_{(2)}$ are the corresponding noise vectors.

- The combiner constructs the following two signal vectors

$$
\begin{aligned}
\tilde{\mathbf{v}}_{(1)} & =g_{1}^{*} \tilde{\mathbf{r}}_{(1)}+g_{2} \tilde{\mathbf{r}}_{(2)}^{*} \\
\tilde{\mathbf{v}}_{(2)} & =g_{2}^{*} \tilde{\mathbf{r}}_{(1)}-g_{1} \tilde{\mathbf{r}}_{(2)}^{*}
\end{aligned}
$$

Afterwards, the receiver applies the vectors $\tilde{\mathbf{v}}_{(1)}$ and $\tilde{\mathbf{v}}_{(2)}$ in a sequential fashion to the metric computer, to make decisions on the symbols $\tilde{\mathbf{s}}_{(1)}$ and $\tilde{\mathbf{s}}_{(2)}$ by maximizing the two respective decision variables

$$
\begin{aligned}
& \mu\left(\tilde{\mathbf{s}}_{(1), m}\right)=\operatorname{Re}\left\{\tilde{\mathbf{v}}_{(1)} \cdot \tilde{\mathbf{s}}_{(1), \mathrm{m}}^{*}\right\}-E_{m}\left(\left|g_{1}\right|^{2}+\left|g_{2}\right|^{2}\right) \\
& \mu\left(\tilde{\mathbf{s}}_{(2), m}\right)=\operatorname{Re}\left\{\tilde{\mathbf{v}}_{(2)} \cdot \tilde{\mathbf{s}}_{(2), \mathrm{m}}^{*}\right\}-E_{m}\left(\left|g_{1}\right|^{2}+\left|g_{2}\right|^{2}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& \tilde{\mathbf{v}}_{(1)}=\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \tilde{\mathbf{s}}_{(1)}+g_{1}^{*} \tilde{\mathbf{n}}_{(1)}+g_{2} \tilde{\mathbf{n}}_{(2)}^{*} \\
& \tilde{\mathbf{v}}_{(2)}=\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \tilde{\mathbf{s}}_{(2)}-g_{1} \tilde{\mathbf{n}}_{(2)}^{*}+g_{2}^{*} \tilde{\mathbf{n}}_{(1)}
\end{aligned}
$$

- Compare with MRC
- With 1×2 diversity and MRC

$$
\begin{aligned}
\tilde{\mathbf{r}} & =g_{1}^{*} \tilde{\mathbf{r}}_{1}+g_{2}^{*} \tilde{\mathbf{r}}_{2} \\
& =\left(\alpha_{1}^{2}+\alpha_{2}^{2}\right) \tilde{\mathbf{s}}_{m}+g_{1}^{*} \tilde{\mathbf{n}}_{1}+g_{2}^{*} \tilde{\mathbf{n}}_{2}
\end{aligned}
$$

- The combined signals in each case are the same. The only difference is the phase rotations of the noise vectors which will not change the error probability.
- However, with transmit diversity the transmit power must be split between two transmit antennas. Hence, 2×1 diversity is 3 dB less power efficient than 1×2 diversity.

Space-time diversity receiver for 2×2 diversity.

Spatial Multiplexing

- In certain types of wireless systems, particularly those using time division duplexing (TDD), knowledge of the channel \mathbf{G} is available at both the transmitter and receiver. In this case, as singular value decomposition (SVD) of the channel matrix \mathbf{G} may be performed.
- Suppose that the channel matrix \mathbf{G} has rank r which is at most $\min \left\{L_{T}, L_{R}\right\}$. Then

$$
\mathbf{G}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{H}
$$

where \mathbf{U} is an $L_{R} \times r$ matrix, \mathbf{V} is an $L_{T} \times r$ matrix, and $\boldsymbol{\Lambda}$ is an $r \times r$ diagonal matrix, such that the diagonal elements $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the singular values of the channel matrix G.

- The matrices \mathbf{U} and \mathbf{V} are unitary matrices, meaning that $\mathbf{U U}^{H}=\mathbf{I}_{r \times r}$ and $\mathbf{V} \mathbf{V}^{H}=\mathbf{I}_{r \times r}$ where $\mathbf{I}_{r \times r}$ is the $r \times r$ identity matrix.

Spatial Multiplexing (cont'd)

- Given knowledge that the channel matrix \mathbf{G} has rank r at the transmitter, r symbols are sent over the channel. The $r \times 1$ transmitted signal vector $\tilde{\mathbf{s}}$ is precoded at the transmitter by using the linear transformation

$$
\tilde{\mathbf{s}}_{p}=\mathbf{V} \tilde{\mathbf{s}}
$$

and transmitted from the L_{T} transmit antennas.

- The corresponding received signal vector across the L_{R} receiver antennas is

$$
\tilde{\mathbf{r}}=\mathbf{G} \tilde{\mathbf{s}}_{p}+\tilde{\mathbf{n}}=\mathbf{G V} \tilde{\mathbf{s}}+\tilde{\mathbf{n}} .
$$

- At the receiver, the received signal vector $\tilde{\mathbf{r}}$ is processed by the linear transformation \mathbf{U}^{H} as follows:

$$
\begin{aligned}
\hat{\mathbf{s}} & =\mathbf{U}^{H} \tilde{\mathbf{r}} \\
& =\mathbf{U}^{H} \mathbf{G} \mathbf{V} \tilde{\mathbf{s}}+\mathbf{U}^{H} \tilde{\mathbf{n}} \\
& =\mathbf{U}^{H} \mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{H} \mathbf{V} \tilde{\mathbf{s}}+\mathbf{U}^{H} \tilde{\mathbf{n}} \\
& =\boldsymbol{\Lambda} \tilde{\mathbf{s}}+\mathbf{U}^{H} \tilde{\mathbf{n}} .
\end{aligned}
$$

- Multiplication of the noise vector $\tilde{\mathbf{n}}$ by the unitary matrix \mathbf{U}^{H} does not alter the statistics of the noise vector. Due to the multiplication of each transmitted symbol \tilde{s}_{k} by the corresponding singular value λ_{k}, the r data streams will have different received bit energy-to-noise ratios depending on the particular channel realization.

