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PERSONAL & MOBILE COMMUNICATIONS

Week 3

Flat Fading Channels

Envelope Distribution

Reading: Chapter 2, 2.1,2.1.3
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Multipath-Fading Mechanism

base station

mobile subscriber

local scatterers

A typical macrocellular mobile radio environment.
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Multipath-Fading Mechanism

mobile station

local scatterers

mobile station

local scatterers

Typical mobile-to-mobile radio propagation environment.
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area mean µ (dB)local mean Ω (dB)

envelope fading

Path loss, shadowing, envelope fading.
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Doppler Shift

y

x

θn

n th incoming wave

vmobile station

2-D Model of a typical wave component incident on a mobile station (MS).

• Assuming 2-D propagation, theDoppler shift is fD,n = fm cos θn, where fm = v/λc

(λc is the carrier wavelength, v is the mobile station velocity).
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Multipath Propagation

• Consider the transmission of the band-pass signal

s(t) = Re
{

s̃(t)ej2πfct
}

• At the receiver antenna, the nth plane wave arrives at angle θn and experiences

Doppler shift fD,n = fm cos θn and propagation delay τn.

• If there are N propagation paths, the received bandpass signal is

r(t) = Re





N
∑

n=1
Cne

jφn−j2πcτn/λc+j2π(fc+fD,n)ts̃(t− τn)



 ,

where Cn, φn, fD,n and τn are the amplitude, phase, Doppler shift and time delay,

respectively, associated with the nth propagation path, and c is the speed of light.

• The delay τn = dn/c is the propagation delay associated with the nth propagation

path, where dn is the length of the path. The path lengths, dn, will depend on the

physical scattering geometry which we have not specified at this point.
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Multipath Propagation

• The received bandpass signal r(t) has the form

r(t) = Re
[

r̃(t)ej2πfct
]

where the received complex envelope is

r̃(t) =
N
∑

n=1
Cne

jφn(t)s̃(t− τn)

and

φn(t) = φn − 2πcτn/λc + 2πfD,nt

is the time-variant phase associated with the nth propagation path.

– Note that the nth component varies with the Doppler frequency fD,n.

– The term cτn/λc is the propagation distance cτn normalized by the carrier wave-

length λc. For cellular frequencies (900 MHz), λc is on the order of a foot.

– The phase φn is introduced by the nth scatterer randomly, and can be assumed

to be uniformly distributed on [−π, π).

– The received phase at any time t, φn(t) is uniformly distributed on [−π, π).
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Flat Fading - impulse response

• The received waveform is given by the convolution

r̃(t) =
∫ t

0
g(t, τ )s̃(t− τ )dτ

• It follows that the channel can be modeled by a linear time-variant filter having the

time-variant impulse response

g(t, τ ) =
N
∑

n=1
Cne

jφn(t)δ(τ − τn)

• If the differential path delays τi − τj are all very small compared to the modulation

symbol period, T , then the τn can be replaced by the mean delay µτ inside the delta

function. Note that this approximation is not applied to the channel phases φn(t),

since small changes in τn result in large changes in φn(t).

– The channel impulse response has the approximate form

g(t, τ ) = g(t)δ(τ − µτ) , g(t) =
N
∑

n=1
Cne

jφn(t) .

– The received complex envelope is

r̃(t) = g(t)s̃(t− µτ) (1)

which experiences fading due to the time-varying complex channel gain g(t).
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Flat Fading - frequency domain

• By taking Fourier transforms of both sides of (1), the received complex envelope in

the frequency domain is

R̃(f) = G(f) ∗ S̃(f)e−j2πfµτ

• Since the channel component g(t) changes with time, it follows that G(f) has a finite

non-zero width in the frequency domain.

• Due to the convolution operation, the output spectrum R̃(f) will be wider than the

input spectrum S̃(f). This broadening of the transmitted signal spectrum is caused

by the channel time variations and is called frequency spreading or Doppler

spreading.

– If the maximum Doppler frequency fm is much less than the signal bandwidth

Wc, then the Doppler spreading will not distort S̃(f).

– Fortunately, this is often the case.
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Channel Transfer Function - Flat Fading

• The time-variant channel transfer function is obtained by taking the Fourier

transform of the time-variant channel impulse response g(t, τ ) with respect to the

delay variable τ , i.e.,

T (t, f) = g(t)e−j2πfµτ .

• Since the magnitude response is |T (t, f)| = |g(t)|, all frequency components in the

received signal are subject to the same time-variant amplitude gain |g(t)| and phase

response 6 T (t, f) = 6 g(t)− 2πfµτ .

• The received signal is said to exhibit “flat fading,” because the magnitude of the

time-variant channel transfer function |T (t, f)| is constant (or flat) with respect to

frequency variable f .

• The phase response 6 T (t, f) = 6 g(t)−2πfµτ is linear in f meaning that the channel

delays the input signal, and gives it a time-varying attenuation and phase rotation.
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Invoking the Central Limit Theorem

• Consider the transmission of an unmodulated carrier, s̃(t) = 1.

• For flat fading channels, the received band-pass signal has the quadrature represen-

tation

r(t) = gI(t) cos 2πfct − gQ(t) sin 2πfct

where

gI(t) =
N
∑

n=1
Cn cosφn(t)

gQ(t) =
N
∑

n=1
Cn sinφn(t)

and where φn(t) = φn − 2πcτn/λc + 2πfD,nt.

• The phases φn are independent and uniform on the interval [−π, π), and the path

delays τn are all independent with fcτn ≫ 1. Therefore, the phases φn(t) at any

time t can be treated as being independent and uniformly distributed on the interval

[−π, π).

• In the limit N → ∞, the central limit theorem can be invoked and gI(t) and

gQ(t) can be treated as “Gaussian random processes,” i.e., at any time t, gI(t)

and gQ(t) are Gaussian random variables.

• The “complex faded envelope” is

g(t) = gI(t) + jgQ(t)
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Rayleigh Fading

• For some types of scattering environments, gI(t) and gQ(t) at any time t1 are indepen-

dent identically distributed Gaussian random variables with zero mean and identical

variance b0 = E[g2I(t1)] = E[g2Q(t1)]. This typically occurs in a rich scattering envi-

ronment where there is no line-of-sight or strong specular component in the received

signal (i.e., there is no dominant Cn) and isotropic antennas are used. Under such

conditions, the channel exhibits Rayleigh fading.

• The probability density function the envelope α = |g(t1)| =
√

g2I(t1) + g2Q(t1) can

be obtained by using a bi-variate transformation of random variables (see Appendix

in textbook).

• The envelope α = |g(t1)| =
√

g2I(t1) + g2Q(t1) is Rayleigh distributed at any time t1,

i.e.,

pα(x) =
x

b0
exp











− x2

2b0











=
2x

Ωp
exp











−x2

Ωp











, x ≥ 0 ,

where Ωp = E[α2] = E[g2I (t1)] + E[g2Q(t1)] = 2b0 is the average envelope power.

• The squared-envelope α2 at any time t1 has the exponential distribution

pα2(x) =
1

Ωp
exp











− x

Ωp











, x ≥ 0 .
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Ricean Fading

motion

direction of

mobile

θ0

A line-of-sight (LoS) or specular (strong reflected) component arrives at angle θ0.
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• For scattering environments that have a specular or LoS component, gI(t) and gQ(t)

are Gaussian random processes with non-zero means mI(t) and mQ(t), respectively.

• If we again assume that gI(t1) and gQ(t1) at any time t1 are independent random

variables with variance b0 = E[(gI(t1)−mI(t1))
2] = E[(gQ(t1)−mQ(t1))

2], then the

magnitude of the envelope α = |g(t1)| at any time t1 has a Rice distribution.

• With Aulin’s Ricean fading model

mI(t) = E[gI(t)] = s · cos(2πfm cos(θ0)t + φ0)

mQ(t) = E[gQ(t)] = s · sin(2πfm cos(θ0)t + φ0)

where fm cos(θ0) and φ0 are the Doppler shift and random phase offset associated

with the LoS or specular component, respectively.

• The envelope α(t) = |g(t)| =
√

g2I(t) + g2Q(t) has the Rice distribution

pα(x) =
x

b0
exp

{

−x2+s2

2b0

}

Io





xs

b0



 , x ≥ 0

– s2 = mI(t)
2 +m2

Q(t) is the specular power.

– 2b0 is the scatter power.

– The Rice factor, K = s2/2b0, is the ratio of the power in the specular and

scatter components.
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• The average envelope power is E[α2] = Ωp = s2 + 2b0 and

s2 =
KΩp

K + 1
, 2b0 =

Ωp

K + 1

Hence,

pα(x) =
2x(K + 1)

Ωp
exp











−K − (K + 1)x2

Ωp











Io









2x

√

√

√

√

√

√

K(K + 1)

Ωp









, x ≥ 0

• The squared-envelope α2(t) has non-central chi-square distribution with two

degrees of freedom

pα2(x) =
(K + 1)

Ωp
exp











−K − (K + 1)x

Ωp











Io









2

√

√

√

√

√

√

K(K + 1)x

Ωp









, x ≥ 0

• The squared-envelope is important for the performance analysis of digital communi-

cation systems because it is proportional to the received signal power and, hence, the

received signal-to-noise ratio.
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The Rice distribution for several values of K with Ωp = 1.
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Nakagami Fading

• Nakagami fading describes the magnitude of the received complex envelope by the

distribution

pα(x) =
2mmx2m−1

Γ(m)Ωm
p

exp











−mx2

Ωp











m ≥ 1

2

• When m = 1, the Nakagami distribution becomes the Rayleigh distribution, when

m = 1/2 it becomes a one-sided Gaussian distribution, and when m → ∞ the

distribution approaches an impulse (no fading).

• The Rice distribution can be closely approximated with a Nakagami distribution by

using the following relation between the Rice factorK and the Nakagami shape factor

m

K ≈
√
m2 −m +m− 1

m ≈ (K + 1)2

(2K + 1)
.

• The squared-envelope has the Gamma distribution

pα2(x) =







m

2Ωp







m
xm−1

Γ(m)
exp











−mx

2Ωp











.
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m = 1
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The Nakagami pdf for several values of m with Ωp = 1.
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m=16 ~ (k=14.8 dB)

Comparison of the cdf of the squared-envelope with Ricean and Nakagami fading.
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