ECE6604
 PERSONAL \& MOBILE COMMUNICATIONS

Week 4
Envelope Correlation
Space-time Correlation

Reading: Chapter 2, 2.1.1, 2.1.2, 2.1.6

Autocorrelation of a Bandpass Random Process

- Consider again the received band-pass random process

$$
r(t)=g_{I}(t) \cos 2 \pi f_{c} t-g_{Q}(t) \sin 2 \pi f_{c} t
$$

where

$$
\begin{aligned}
g_{I}(t) & =\sum_{n=1}^{N} C_{n} \cos \phi_{n}(t) \\
g_{Q}(t) & =\sum_{n=1}^{N} C_{n} \sin \phi_{n}(t)
\end{aligned}
$$

- Assuming that $r(t)$ is wide-sense stationary, the autocorrelation of $r(t)$ is

$$
\begin{aligned}
\phi_{r r}(\tau) & =\mathrm{E}[r(t) r(t+\tau)] \\
& =\mathrm{E}\left[g_{I}(t) g_{I}(t+\tau)\right] \cos 2 \pi f_{c} \tau+\mathrm{E}\left[g_{Q}(t) g_{I}(t+\tau)\right] \sin 2 \pi f_{c} \tau \\
& =\phi_{g_{I} g_{I}}(\tau) \cos 2 \pi f_{c} \tau-\phi_{g_{I} g_{Q}}(\tau) \sin 2 \pi f_{c} \tau
\end{aligned}
$$

where $\mathrm{E}[\cdot]$ is the ensemble average operator, and

$$
\begin{aligned}
\phi_{g_{I} g_{I}}(\tau) & \triangleq \mathrm{E}\left[g_{I}(t) g_{I}(t+\tau)\right] \\
\phi_{g_{I} g_{Q}}(\tau) & \triangleq \mathrm{E}\left[g_{I}(t) g_{Q}(t+\tau)\right]
\end{aligned}
$$

Note that the wide-sense stationarity of $r(t)$ imposes the condition

$$
\begin{aligned}
\phi_{g_{I} g_{I}}(\tau) & =\phi_{g_{Q} g_{Q}}(\tau) \\
\phi_{g_{I} g_{Q}}(\tau) & =-\phi_{g_{Q} g_{I}}(\tau)
\end{aligned}
$$

Auto- and Cross-correlation of Quadrature Components

- The phases $\phi_{n}(t)$ are statistically independent random variables at any time t, uniformly distributed over the interval $[-\pi, \pi)$.
- The azimuth angles of arrival, θ_{n} are all independent due to the random placement of scatterers. Also, in the limit $N \rightarrow \infty$, the discrete azimuth angles of arrival θ_{n} can be replaced by a continuous random variable θ having the probability density function $p(\theta)$.
- By using the above properties, the auto- and cross-correlation functions can be obtained as follows:

$$
\begin{aligned}
\phi_{g_{I} g_{I}}(\tau)=\phi_{g_{Q} g_{Q}}(\tau) & =\lim _{N \rightarrow \infty} \mathrm{E}_{\boldsymbol{\tau}, \boldsymbol{\theta}, \boldsymbol{\phi}}\left[g_{I}(t) g_{I}(t+\tau)\right]=\frac{\Omega_{p}}{2} \mathrm{E}_{\theta}\left[\cos \left(2 \pi f_{m} \tau \cos \theta\right)\right] \\
\phi_{g_{I} g_{Q}}(\tau)=-\phi_{g_{Q} g_{I}}(\tau)= & \lim _{N \rightarrow \infty} \mathrm{E}_{\boldsymbol{\tau}, \boldsymbol{\theta}, \boldsymbol{\phi}}\left[g_{I}(t) g_{Q}(t+\tau)\right]=\frac{\Omega_{p}}{2} \mathrm{E}_{\theta}\left[\sin \left(2 \pi f_{m} \tau \cos \theta\right)\right] \\
\boldsymbol{\tau} & =\left(\tau_{1}, \tau_{2}, \ldots, \tau_{N}\right) \\
\boldsymbol{\theta} & =\left(\theta_{1}, \theta_{2}, \ldots, \theta_{N}\right) \\
\boldsymbol{\phi} & =\left(\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right) \\
\Omega_{p} & =\mathrm{E}\left[g_{I}^{2}(t)\right]+\mathrm{E}\left[g_{Q}^{2}(t)\right]=\sum_{n=1}^{N} C_{n}^{2}
\end{aligned}
$$

and Ω_{p} is the total received envelope power.

2-D Isotropic Scattering

- Evaluation of the expectations for the auto- and cross-correlation functions requires the azimuth distribution of arriving plane waves $p(\theta)$, and the receiver antenna gain pattern $G(\theta)$, as a function of the azimuth angle θ.
- With 2-D isotropic scattering, the plane waves are confined to the $x-y$ plane and arrive uniformly distributed angle of incidence, i.e.,

$$
p(\theta)=\frac{1}{2 \pi}, \quad-\pi \leq \theta \leq \pi
$$

- With 2-D isotropic scattering and an isotropic receiver antenna with gain $G(\theta)=1, \theta \in$ $[-\pi, \pi)$, the auto- and cross-correlation functions become

$$
\begin{aligned}
\phi_{g_{I} g_{I}}(\tau) & ==\frac{\Omega_{p}}{2} J_{0}\left(2 \pi f_{m} \tau\right) \\
\phi_{g_{I} g_{Q}}(\tau) & =0
\end{aligned}
$$

where

$$
J_{0}(x)=\frac{1}{\pi} \int_{0}^{\pi} \cos (x \cos \theta) \mathrm{d} \theta
$$

is the zero-order Bessel function of the first kind.

Normalized autocorrelation function of the quadrature components of the received complex envelope with 2-D isotropic scattering and an isotropic receiver antenna.

Doppler Spectrum

- The autocorrelation function and power spectral density (psd) are Fourier transform pairs.

$$
\begin{aligned}
S_{g g}(f) & =\int_{-\infty}^{\infty} \phi_{g g}(\tau) e^{-j 2 \pi f \tau} d \tau \\
\phi_{g g}(\tau) & =\int_{-\infty}^{\infty} S_{g g}(f) e^{j 2 \pi f \tau} d f
\end{aligned}
$$

- The autocorrelation of the received complex envelope $g(t)=g_{I}(t)+j g_{Q}(t)$ is

$$
\begin{aligned}
\phi_{g g}(\tau) & =\frac{1}{2} \mathrm{E}\left[g^{*}(t) g(t+\tau)\right] \\
& =\phi_{g_{I} g_{I}}(\tau)+j \phi_{g_{I} g_{Q}}(\tau)
\end{aligned}
$$

- The Fourier transform of $\phi_{g g}(\tau)$ gives the Doppler psd

$$
S_{g g}(f)=S_{g_{I} g_{I}}(f)+j S_{g_{I} g_{Q}}(f)
$$

Sometimes $S_{g g}(f)$ is just called the "Doppler spectrum."

Bandpass Doppler Spectrum

- We can also relate the power spectrum of the complex envelope $g(t)$ to that of the band-pass process $r(t)$. We have

$$
\phi_{r r}(\tau)=\operatorname{Re}\left[\phi_{g g}(\tau) e^{j 2 \pi f_{c} \tau}\right] .
$$

- By using the identity

$$
\operatorname{Re}[z]=\frac{z+z^{*}}{2}
$$

and the property $\phi_{g g}(\tau)=\phi_{g g}^{*}(-\tau)$, it follows that the band-pass Doppler psd is

$$
S_{r r}(f)=\frac{1}{2}\left[S_{g g}\left(f-f_{c}\right)+S_{g g}\left(-f-f_{c}\right)\right] .
$$

- Since $\phi_{g g}(\tau)=\phi_{g g}^{*}(-\tau)$, the Doppler spectrum $S_{g g}(f)$ is always a real-valued function of frequency, but not necessarily even. However, the band-pass Doppler spectrum $S_{r r}(f)$ is always real-valued and even.

Isotropic Scattering

- For 2-D isotropic scattering, the psd and cross psd of $g_{I}(t)$ and $g_{Q}(t)$ are

$$
\begin{aligned}
& S_{g_{I} g_{I}}(f)=\mathcal{F}\left[\phi_{g_{I} g_{I}}(\tau)\right]=\left\{\begin{array}{lll}
\frac{\Omega_{p}}{2 \pi f_{m}} \frac{1}{\sqrt{1-\left(\frac{f}{f_{m}}\right)^{2}}} & , & |f| \leq f_{m} \\
0 & , & \text { otherwise } \\
S_{g_{I} g_{Q}}(f)=0
\end{array}\right.
\end{aligned}
$$

Normalized psd of the quadrature components of the received complex envelope with 2-D isotropic scattering and an isotropic receiver antenna. Sometimes this is called the CLASSICAL Doppler power spectrum.

Non-isotropic Scattering - Rician Fading

- Suppose that the propagation environment consisting of a strong specular component plus a scatter component. The azimuth distribution $p(\theta)$ might have the form

$$
p(\theta)=\frac{1}{K+1} \hat{p}(\theta)+\frac{K}{K+1} \delta\left(\theta-\theta_{0}\right)
$$

where $\hat{p}(\theta)$ is the continuous AoA distribution of the scatter component, θ_{0} is the AoA of the specular component, and K is the ratio of the received specular to scattered power.

- One such scattering environment, assumes that the scatter component exhibits 2-D isotropic scattering, i.e., $\hat{p}(\theta)=1 /(2 \pi), \theta \in[-\pi, \pi)$.
- The correlation functions $\phi_{g_{I} g_{I}}(\tau)$ and $\phi_{g_{I} g_{Q}}(\tau)$ are

$$
\begin{aligned}
\phi_{g_{I} g_{I}}(\tau) & =\frac{1}{K+1} \frac{\Omega_{p}}{2} J_{0}\left(2 \pi f_{m} \tau\right)+\frac{K}{K+1} \frac{\Omega_{p}}{2} \cos \left(2 \pi f_{m} \tau \cos \theta_{0}\right) \\
\phi_{g_{I} g_{Q}}(\tau) & =\frac{K}{K+1} \frac{\Omega_{p}}{2} \sin \left(2 \pi f_{m} \tau \cos \theta_{0}\right)
\end{aligned}
$$

Plot of $p(\theta)$ vs. θ with 2- D isotropic scattering plus a LoS or specular component arriving at angle $\theta_{0}=\pi / 2$.

- The azimuth distribution

$$
p(\theta)=\frac{1}{K+1} \hat{p}(\theta)+\frac{K}{K+1} \delta\left(\theta-\theta_{0}\right)
$$

yields a complex envelope having a Doppler spectrum of the form

$$
\begin{equation*}
S_{g g}(f)=\frac{1}{K+1} S_{g g}^{c}(f)+\frac{K}{K+1} S_{g g}^{d}(f) \tag{1}
\end{equation*}
$$

where $S_{g g}^{d}(f)$ is the discrete portion of the Doppler spectrum due to the specular component and $S_{g g}^{c}(f)$ is the continuous portion of the Doppler spectrum due to the scatter component.

- For the case when $\hat{p}(\theta)=1 /(2 \pi), \theta \in[-\pi, \pi]$, the power spectrum of $g(t)=g_{I}(t)+j g_{Q}(t)$ is

$$
S_{g g}(f)= \begin{cases}\frac{1}{K+1} \cdot \frac{\Omega_{p}}{2 \pi f_{m}} \frac{1}{\sqrt{1-\left(f / f_{m}\right)^{2}}} & \\ \quad+\frac{K}{K+1} \frac{\Omega_{p}}{2} \delta\left(f-f_{m} \cos \theta_{0}\right) & 0 \leq|f| \leq f_{m} \\ 0 & \text { otherwise }\end{cases}
$$

- Note the discrete tone at frequency $f_{c}+f_{m} \cos \theta_{0}$ due to the line-of-sight or specular component arriving from angle θ_{0}.

Non-isotropic scattering - Other Cases

- Sometimes the azimuth distribution $p(\theta)$ may not be uniform, a condition commonly called non-isotropic scattering. Several distributions have been suggested to model non-isotropic scattering.
- Once possibility is the Gaussian distribution

$$
p(\theta)=\frac{1}{\sqrt{2 \pi} \sigma_{S}} \exp \left\{-\frac{(\theta-\mu)^{2}}{2 \sigma_{S}^{2}}\right\}
$$

where μ is the mean AoA, and σ_{S} is the rms AoA spread.

- Another possibility is the von Mises distribution

$$
p(\theta)=\frac{1}{2 \pi I_{0}(k)} \exp [k \cos (\theta-\mu)],
$$

where $\theta \in[-\pi, \pi), I_{0}(\cdot)$ is the zeroth-order modified Bessel function of the first kind, $\mu \in[-\pi, \pi)$ is the mean AoA, and k controls the spread of scatterers around the mean.

Plot of $p(\theta)$ vs. θ for the von Mises distribution with a mean angle-to-arrival $\mu=\pi / 2$.

Calculating the Doppler Spectrum

- The Doppler spectrum can be derived by using a different approach that is sometimes very useful because it can avoid the need to evaluate integrals. The Doppler spectrum can be expressed as

$$
S_{g g}(f)|d f|=\frac{\Omega_{p}}{2}(G(\theta) p(\theta)+G(-\theta) p(-\theta))|d \theta| .
$$

- The Doppler frequency associated with the incident plane wave arriving at angle θ is

$$
f=f_{m} \cos (\theta),
$$

and, hence,

$$
|d f|=f_{m}|-\sin (\theta) d \theta|=\sqrt{f_{m}^{2}-f^{2}}|d \theta| .
$$

- Therefore,

$$
S_{g g}(f)=\frac{\Omega_{p} / 2}{\sqrt{f_{m}^{2}-f^{2}}}(G(\theta) p(\theta)+G(-\theta) p(-\theta))
$$

where

$$
\theta=\cos ^{-1}\left(f / f_{m}\right) .
$$

- Hence, if $p(\theta)$ and $G(\theta)$ are known, the Doppler spectrum can be easily calculated. For example, with 2-D isotropic scattering and an isotropic antenna $G(\theta) p(\theta)=1 /(2 \pi)$.

Space-time Correlation Functions

- Many mobile radio systems use antenna diversity, where spatially separated receiver antennas provide multiple faded replicas of the same information bearing signal.
- The spatial decorrelation of the channel tell us the required spatial separation between antenna elements so that they will be "sufficiently" decorrelated.
- Sometimes it is desirable to simultaneously characterize both the spatial and temporal correlation characteristics of the channel, e,g, when using space-time coding. This can be described by the space-time correlation function.
- To obtain the spatial or space-time correlation functions, we must specify some kind of radio scattering geometry.

Spatial Correlation at the Mobile Station

Single-ring scattering model for NLoS propagation on the forward link of a cellular system. The MS is surrounded by a scattering ring of radius R and is at distance D from the $B S$, where $R \ll D$.

Model Parameters

- O_{B} : base station location
- O_{M} : mobile station location
- $D: \operatorname{LoS}$ distance from base station to mobile station
- R : scattering radius
- γ_{M} : mobile station moving direction w.r.t x-axis
- v : mobile station speed
- θ_{M} mobile station array orientation w.r.t. x-axis
- $A_{M}^{(i)}$: location of i th mobile station antenna element
- δ_{M} : distance between mobile station antenna elements
- $S_{M}^{(n)}:$ location of nth scatterer.
- $\alpha_{M}^{(n)}$: angle of arrival from the nth scatterer.
- ϵ_{n} : distance $O_{B}-S_{M}^{(n)}$.
- $\epsilon_{n i}$: distance $S_{M}^{(n)}-A_{M}^{(i)}$.

Received Complex Envelope

- The channel from O_{B} to $A_{M}^{(q)}$ has the complex envelope

$$
g_{q}(t)=\sum_{n=1}^{N} C_{n} e^{j \phi_{n}-j 2 \pi\left(\epsilon_{n}+\epsilon_{n q}\right) / \lambda_{c}} e^{j 2 \pi f_{m} t \cos \left(\alpha_{M}^{(n)}-\gamma_{M}\right)}, q=1,2
$$

where ϵ_{n} and $\epsilon_{n q}$ denote the distances $O_{B}-S_{M}^{(n)}$ and $S_{M}^{(n)}-A_{M}^{(q)}, q=1,2$, respectively, and ϕ_{n} is a uniform random phase on the interval $[-\pi, \pi)$.

- From the Law of Cosines, the distances ϵ_{n} and $\epsilon_{n q}$ can be expressed as a function of the angle-of-arrival $\alpha_{M}^{(n)}$ as follows:

$$
\begin{aligned}
\epsilon_{n}^{2} & =D^{2}+R^{2}+2 D R \cos \alpha_{M}^{(n)} \text { Note sign change since the angle is } \pi-\alpha_{M}^{(n)} \\
\epsilon_{n q}^{2} & =\left[(1.5-q) \delta_{M}\right]^{2}+R^{2}-2(1.5-q) \delta_{M} R \cos \left(\alpha_{M}^{(n)}-\theta_{M}\right), q=1,2 .
\end{aligned}
$$

- Assuming that $R / D \ll 1$ (local scattering), $\delta_{M} \ll R$ and $\sqrt{1 \pm x} \approx 1 \pm x / 2$ for small x, we have

$$
\begin{aligned}
\epsilon_{n} & \approx D+R \cos \alpha_{M}^{(n)} \\
\epsilon_{n q} & \approx R-(1.5-q) \delta_{M} \cos \left(\alpha_{M}^{(n)}-\theta_{M}\right), q=1,2 .
\end{aligned}
$$

- Hence,

$$
\begin{aligned}
g_{q}(t)= & \sum_{n=1}^{N} C_{n} e^{j \phi_{n}-j 2 \pi\left(D+R \cos \alpha_{M}^{(n)}+R-(1.5-q) \delta_{M} \cos \left(\alpha_{M}^{(n)}-\theta_{M}\right)\right) / \lambda_{c}} \\
& \times e^{j 2 \pi f_{m} t \cos \left(\alpha_{M}^{(n)}-\gamma_{M}\right)}, q=1,2
\end{aligned}
$$

Space-time Correlation Function

- The space-time correlation function between the two complex faded envelopes $g_{1}(t)$ and $g_{2}(t)$ is

$$
\phi_{g_{1}, g_{2}}\left(\delta_{M}, \tau\right)=\frac{1}{2} \mathrm{E}\left[g_{1}^{*}(t) g_{2}(t+\tau)\right]
$$

- The space-time correlation function between $g_{1}(t)$ and $g_{2}(t)$ can be written as

$$
\phi_{g_{1}, g_{2}}\left(\delta_{M}, \tau\right)=\frac{\Omega_{p}}{2 N} \sum_{n=1}^{N} \mathrm{E}\left[e^{j 2 \pi\left(\delta_{M} / \lambda_{c}\right) \cos \left(\alpha_{M}^{(n)}-\theta_{M}\right)} e^{-j 2 \pi f_{m} \tau \cos \left(\alpha_{M}^{(n)}-\gamma_{M}\right)}\right] .
$$

- Since the number of scatters is infinite, the discrete angles-of-arrival $\alpha_{M}^{(n)}$ can be replaced with a continuous random variable α_{M} with probability density function $p\left(\alpha_{M}\right)$.
- Hence, the space-time correlation function becomes

$$
\phi_{g_{1}, g_{2}}\left(\delta_{M}, \tau\right)=\frac{\Omega_{p}}{2} \int_{0}^{2 \pi} e^{j b \cos \left(\alpha_{M}-\theta_{M}\right)} e^{-j a \cos \left(\alpha_{M}-\gamma_{M}\right)} p\left(\alpha_{M}\right) d \alpha_{M}
$$

where $a=2 \pi f_{m} \tau$ and $b=2 \pi \delta_{M} / \lambda_{c}$.

2-D Isotropic Scattering

- For the case of 2-D isotropic scattering with an isotropic receive antennas, $p\left(\alpha_{M}\right)=1 /(2 \pi),-\pi \leq$ $\alpha_{M} \leq \pi$, and the space-time correlation function becomes

$$
\phi_{g_{1}, g_{2}}\left(\delta_{M}, \tau\right)=\frac{\Omega_{p}}{2} J_{0}\left(\sqrt{a^{2}+b^{2}-2 a b \cos \left(\theta_{M}-\gamma_{M}\right)}\right) .
$$

- The spatial and temporal correlation functions can be obtained by setting $\tau=0$ and $\delta_{M}=0$, respectively. This gives

$$
\begin{aligned}
\phi_{g_{1}, g_{2}}\left(\delta_{M}\right) & =\phi_{g_{1}, g_{2}}\left(\delta_{M}, 0\right)=\frac{\Omega_{p}}{2} J_{0}\left(2 \pi \delta_{M} / \lambda_{c}\right) \\
\phi_{g g}(\tau) & =\phi_{g_{1}, g_{2}}(0, \tau)=\frac{\Omega_{p}}{2} J_{0}\left(2 \pi f_{m} \tau\right)
\end{aligned}
$$

- Finally, we note that

$$
f_{m} \tau=\frac{v \cdot \tau}{\lambda_{c}}=\frac{\delta_{M}}{\lambda_{c}}
$$

For this scattering environment, the normalized time $f_{m} \tau$ is equivalent to the normalized distance δ_{M} / λ_{c}.

- The antenna branches are uncorrelated if they are separated by $\delta_{M} \approx 0.5 \lambda_{c}$.

Temporal and spatial correlation functions at the MS with 2-D isotropic scattering and an isotropic receiver antenna. Note that $f_{m} \tau=\delta_{M} / \lambda_{c}$.

Spatial Correlation at the Base Station

Single-ring scattering model for NLoS propagation on the reverse link of a cellular system. The $M S$ is surrounded by a scattering ring of radius R and is at distance D from the $B S$, where $R \ll D$.

Model Parameters

- O_{B} : base station location
- O_{M} : mobile station location
- $D:$ LoS distance from base station to mobile station
- R : scattering radius
- γ_{M} : mobile station moving direction w.r.t x-axis
- v : mobile station speed
- θ_{B} base station array orientation w.r.t. x-axis
- $A_{B}^{(i)}$: location of i th base station antenna element
- δ_{B} : distance between mobile station antenna elements
- $S_{M}^{(m)}$: location of m th scatterer.
- $\alpha_{M}^{(m)}$: angle of departure to the nth scatterer.
- ϵ_{m} : distance $S_{M}^{(m)}-O_{B}$.
- $\epsilon_{m i}$: distance $S_{M}^{(m)}-A_{B}^{(i)}$.

Received Complex Envelope

- The channel from O_{M} to $A_{B}^{(q)}$ has the complex envelope

$$
\begin{equation*}
g_{q}(t)=\sum_{m=1}^{N} C_{m} e^{j \phi_{m}-j 2 \pi\left(R+\epsilon_{m q}\right) / \lambda_{c}} e^{j 2 \pi f_{m} t \cos \left(\alpha_{M}^{(m)}-\gamma_{M}\right)}, q=1,2 \tag{2}
\end{equation*}
$$

where $\epsilon_{m q}$ denote the distance $S_{M}^{(m)}-A_{B}^{(q)}, q=1,2$, and ϕ_{m} is a uniform random phase on $(-\pi, \pi]$. To proceed further, we need to express $\epsilon_{m q}$ as a function of $\alpha_{M}^{(m)}$.

- Applying the Law of Cosines to the triangle $\triangle S_{M}^{(m)} O_{B} A_{B}^{(q)}$, the distance $\epsilon_{m q}$ can be expressed as a function of the angle $\theta_{B}^{(m)}-\theta_{B}$ as follows:

$$
\begin{equation*}
\epsilon_{m q}^{2}=\left[(1.5-q) \delta_{B}\right]^{2}+\epsilon_{m}^{2}-2(1.5-q) \delta_{B} \epsilon_{m} \cos \left(\theta_{B}^{(m)}-\theta_{B}\right), q=1,2 \tag{3}
\end{equation*}
$$

where ϵ_{m} is the distance $S_{M}^{(m)}-O_{B}$.

- By applying the Law of Sines to the triangle $\triangle O_{M} S_{M}^{(m)} O_{B}$ we obtain following identity

$$
\frac{\epsilon_{m}}{\sin \alpha_{M}^{(m)}}=\frac{R}{\sin \left(\pi-\theta_{B}^{(m)}\right)}=\frac{D}{\sin \left(\pi-\alpha_{M}^{(m)}-\left(\pi-\theta_{B}^{(m)}\right)\right)}
$$

Received Complex Envelope

- Since the angle $\pi-\theta_{B}^{(m)}$ is small, we can apply the small angle approximations $\sin x \approx x$ and $\cos x \approx 1$ for small x, to the second equality in the above identity. This gives

$$
\frac{R}{\left(\pi-\theta_{B}^{(m)}\right)} \approx \frac{D}{\sin \left(\pi-\alpha_{M}^{(m)}\right)}
$$

or

$$
\left(\pi-\theta_{B}^{(m)}\right) \approx(R / D) \sin \left(\pi-\alpha_{M}^{(m)}\right)
$$

- It follows that the cosine term in (2) becomes

$$
\begin{align*}
\cos \left(\theta_{B}^{(m)}-\theta_{B}\right) & =\cos \left(\pi-\theta_{B}-\left(\pi-\theta_{B}^{(m)}\right)\right) \\
& =\cos \left(\pi-\theta_{B}\right) \cos \left(\pi-\theta_{B}^{(m)}\right)+\sin \left(\pi-\theta_{B}\right) \sin \left(\pi-\theta_{B}^{(m)}\right) \\
& \approx \cos \left(\pi-\theta_{B}\right)+\sin \left(\pi-\theta_{B}\right)(R / D) \sin \left(\pi-\alpha_{M}^{(m)}\right) \\
& =-\cos \left(\theta_{B}\right)+(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right) \tag{4}
\end{align*}
$$

- Using the approximation in (4) in (2), along with $\delta_{B} / \epsilon_{m} \ll 1$, gives

$$
\epsilon_{m q}^{2} \approx \epsilon_{m}^{2}\left[1-2(1.5-q) \frac{\delta_{B}}{\epsilon_{m}}\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right)-\cos \left(\theta_{B}\right)\right]\right]
$$

Received Complex Envelope

- Applying the approximation $\sqrt{1 \pm x} \approx 1 \pm x / 2$ for small x, we have

$$
\begin{equation*}
\epsilon_{m q} \approx \epsilon_{m}-(1.5-q) \delta_{B}\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right)-\cos \left(\theta_{B}\right)\right] . \tag{5}
\end{equation*}
$$

- Applying the Law of Cosines to the triangle $\triangle O_{M} S_{M}^{(m)} O_{B}$ we have

$$
\begin{aligned}
\epsilon_{m}^{2} & =D^{2}+R^{2}-2 D R \cos \left(\alpha_{M}^{(m)}\right) \\
& \approx D^{2}\left[1-2(R / D) \cos \left(\alpha_{M}^{(m)}\right)\right],
\end{aligned}
$$

and again using the approximation $\sqrt{1 \pm x} \approx 1 \pm x / 2$ for small x, we have

$$
\begin{equation*}
\epsilon_{m} \approx D-R \cos \left(\alpha_{M}^{(m)}\right) \tag{6}
\end{equation*}
$$

- Finally, using (5) in (4) gives

$$
\begin{equation*}
\epsilon_{m q} \approx D-R \cos \left(\alpha_{M}^{(m)}\right)-(1.5-q) \delta_{B}\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right)-\cos \left(\theta_{B}\right)\right] . \tag{7}
\end{equation*}
$$

- Substituting (7) into (2) gives the result

$$
\begin{align*}
g_{q}(t)= & \sum_{m=1}^{N} C_{m} e^{j \phi_{m}+j 2 \pi f_{m} t \cos \left(\alpha_{M}^{(m)}-\gamma_{M}\right)} \tag{8}\\
& \times e^{-j 2 \pi\left(R+D-R \cos \left(\alpha_{M}^{(m)}\right)-(1.5-q) \delta_{B}\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right)-\cos \left(\theta_{B}\right)\right]\right) / \lambda_{c}},
\end{align*}
$$

which no longer depends on the $\epsilon_{m q}$ and is a function of the angle of departure $\alpha_{M}^{(m)}$.

Space-time Correlation Function

- The space-time correlation function between the two complex faded envelopes $g_{1}(t)$ and $g_{2}(t)$ at the BS is once again given by

$$
\phi_{g_{1}, g_{2}}\left(\delta_{B}, \tau\right)=\frac{1}{2} \mathrm{E}\left[g_{1}^{*}(t) g_{2}(t+\tau)\right]
$$

Using (8), the space-time correlation function between $g_{1}(t)$ and $g_{2}(t)$ can be written as

$$
\begin{aligned}
\phi_{g_{1}, g_{2}}\left(\delta_{B}, \tau\right)= & \frac{\Omega_{p}}{2 N} \sum_{m=1}^{N} \mathrm{E}\left[e^{j 2 \pi\left(\delta_{B} / \lambda_{c}\right)\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}^{(m)}\right)-\cos \left(\theta_{B}\right)\right]}\right. \\
& \left.\times e^{-j 2 \pi f_{m} \tau \cos \left(\alpha_{M}^{(m)}-\gamma_{M}\right)}\right]
\end{aligned}
$$

- Since the number of scatters around the MS is infinite, the discrete angles-of-departure $\alpha_{M}^{(m)}$ can be replaced with a continuous random variable α_{M} with probability density function $p\left(\alpha_{M}\right)$.
- Hence, the space-time correlation function becomes.

$$
\phi_{g_{1}, g_{2}}\left(\delta_{B}, \tau\right)=\frac{\Omega_{p}}{2} \int_{-\pi}^{\pi} e^{-j a \cos \left(\alpha_{M}-\gamma_{M}\right)} e^{j b\left[(R / D) \sin \left(\theta_{B}\right) \sin \left(\alpha_{M}\right)-\cos \left(\theta_{B}\right)\right]} p\left(\alpha_{M}\right) d \alpha_{M}
$$

where $a=2 \pi f_{m} \tau$ and $b=2 \pi \delta_{B} / \lambda_{c}$.

2-D Isotropic Scattering

- For the case of 2-D isotropic scattering with an isotropic MS transmit antenna, $p\left(\alpha_{M}\right)=$ $1 /(2 \pi),-\pi \leq \alpha_{M} \leq \pi$, and the space-time correlation function becomes

$$
\begin{aligned}
\phi_{g_{1}, g_{2}}\left(\delta_{B}, \tau\right)= & \frac{\Omega_{p}}{2} e^{-j b \cos \left(\theta_{B}\right)} \\
& \times J_{0}\left(\sqrt{a^{2}+b^{2}(R / D)^{2} \sin ^{2}\left(\theta_{B}\right)-2 a b(R / D) \sin \left(\theta_{B}\right) \sin \left(\gamma_{M}\right)}\right)
\end{aligned}
$$

- The spatial and temporal correlation functions can be obtained by setting $\tau=0$ and and $\delta_{B}=0$, respectively.
- The temporal correlation function $\phi_{g g}(\tau)=\phi_{g_{1}, g_{2}}(0, \tau)=\frac{\Omega_{p}}{2} J_{0}\left(2 \pi f_{m} \tau\right)$ which matches our result for the received signal at a mobile station.
- The spatial correlation function is

$$
\begin{aligned}
\phi_{g_{1}, g_{2}}\left(\delta_{B}\right) & =\phi_{g_{1}, g_{2}}\left(\delta_{B}, 0\right)=\frac{\Omega_{p}}{2} e^{-j b \cos \left(\theta_{B}\right)} J_{0}\left(b(R / D) \sin \left(\theta_{B}\right)\right) \\
& =\frac{\Omega_{p}}{2} e^{-j b \cos \left(\theta_{B}\right)} J_{0}\left(\left(2 \pi \delta_{B} / \lambda_{c}\right)(R / D) \sin \left(\theta_{B}\right)\right)
\end{aligned}
$$

- Observe that a much greater spatial separation is required to achieve a given degree of envelope decorrelation at the BS as compared to the MS. This can be readily seen by the term $R / D \ll 1$ in the argument of the Bessel function.

Envelope crosscorrelation magnitude at the base station for different base station antenna orientation angles, $\theta_{B} ; D=3000 m, R=60 \mathrm{~m}$. Broadside base station antennas have the lowest crosscorrelation.

Envelope crosscorrelation magnitude at the base station for $\theta_{B}=\pi / 3$ and various scattering radii, $R ; D=3000 \mathrm{~m}$. Smaller scattering radii will result in larger a crosscorrelations.

