ECE6604 PERSONAL & MOBILE COMMUNICATIONS

Week 4

Envelope Correlation Space-time Correlation

Reading: Chapter 2, 2.1.1, 2.1.2, 2.1.6

Autocorrelation of a Bandpass Random Process

• Consider again the received band-pass random process

$$r(t) = g_I(t)\cos 2\pi f_c t - g_Q(t)\sin 2\pi f_c t$$

where

$$g_I(t) = \sum_{n=1}^N C_n \cos \phi_n(t)$$
$$g_Q(t) = \sum_{n=1}^N C_n \sin \phi_n(t)$$

• Assuming that r(t) is wide-sense stationary, the autocorrelation of r(t) is

$$\begin{aligned} \phi_{rr}(\tau) &= \operatorname{E}[r(t)r(t+\tau)] \\ &= \operatorname{E}[g_I(t)g_I(t+\tau)]\cos 2\pi f_c \tau + \operatorname{E}[g_Q(t)g_I(t+\tau)]\sin 2\pi f_c \tau \\ &= \phi_{g_Ig_I}(\tau)\cos 2\pi f_c \tau - \phi_{g_Ig_Q}(\tau)\sin 2\pi f_c \tau \end{aligned}$$

where $E[\cdot]$ is the ensemble average operator, and

$$\phi_{g_I g_I}(\tau) \stackrel{\triangle}{=} \operatorname{E}[g_I(t)g_I(t+\tau)]$$

$$\phi_{g_I g_Q}(\tau) \stackrel{\triangle}{=} \operatorname{E}[g_I(t)g_Q(t+\tau)]$$

Note that the wide-sense stationarity of r(t) imposes the condition

$$\phi_{g_I g_I}(\tau) = \phi_{g_Q g_Q}(\tau)$$

$$\phi_{g_I g_Q}(\tau) = -\phi_{g_Q g_I}(\tau)$$

Auto- and Cross-correlation of Quadrature Components

- The phases $\phi_n(t)$ are statistically independent random variables at any time t, uniformly distributed over the interval $[-\pi, \pi)$.
- The azimuth angles of arrival, θ_n are all independent due to the random placement of scatterers. Also, in the limit $N \to \infty$, the discrete azimuth angles of arrival θ_n can be replaced by a continuous random variable θ having the probability density function $p(\theta)$.
- By using the above properties, the auto- and cross-correlation functions can be obtained as follows:

$$\begin{split} \phi_{g_Ig_I}(\tau) &= \phi_{g_Qg_Q}(\tau) = \lim_{N \to \infty} \mathcal{E}_{\boldsymbol{\tau},\boldsymbol{\theta},\boldsymbol{\phi}}[g_I(t)g_I(t+\tau)] = \frac{\Omega_p}{2} \mathcal{E}_{\boldsymbol{\theta}}[\cos(2\pi f_m \tau \cos \theta)] \\ \phi_{g_Ig_Q}(\tau) &= -\phi_{g_Qg_I}(\tau) = \lim_{N \to \infty} \mathcal{E}_{\boldsymbol{\tau},\boldsymbol{\theta},\boldsymbol{\phi}}[g_I(t)g_Q(t+\tau)] = \frac{\Omega_p}{2} \mathcal{E}_{\boldsymbol{\theta}}[\sin(2\pi f_m \tau \cos \theta)] \\ \boldsymbol{\tau} &= (\tau_1, \tau_2, \dots, \tau_N) \\ \boldsymbol{\theta} &= (\theta_1, \theta_2, \dots, \theta_N) \\ \boldsymbol{\phi} &= (\phi_1, \phi_2, \dots, \phi_N) \\ \Omega_p &= \mathcal{E}[g_I^2(t)] + \mathcal{E}[g_Q^2(t)] = \sum_{n=1}^N C_n^2 \end{split}$$

and Ω_p is the total received envelope power.

2-D Isotropic Scattering

- Evaluation of the expectations for the auto- and cross-correlation functions requires the azimuth distribution of arriving plane waves $p(\theta)$, and the receiver antenna gain pattern $G(\theta)$, as a function of the azimuth angle θ .
- With 2-D isotropic scattering, the plane waves are confined to the x y plane and arrive uniformly distributed angle of incidence, i.e.,

$$p(\theta) = \frac{1}{2\pi} , \quad -\pi \le \theta \le \pi$$

• With 2-D isotropic scattering and an isotropic receiver antenna with gain $G(\theta) = 1, \theta \in [-\pi, \pi)$, the auto- and cross-correlation functions become

$$\phi_{g_I g_I}(\tau) = \frac{\Omega_p}{2} J_0(2\pi f_m \tau)$$

$$\phi_{g_I g_Q}(\tau) = 0$$

where

$$J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \theta) d\theta$$

is the zero-order Bessel function of the first kind.

Normalized autocorrelation function of the quadrature components of the received complex envelope with 2-D isotropic scattering and an isotropic receiver antenna.

Doppler Spectrum

• The autocorrelation function and power spectral density (psd) are Fourier transform pairs.

$$S_{gg}(f) = \int_{-\infty}^{\infty} \phi_{gg}(\tau) e^{-j2\pi f\tau} d\tau$$

$$\phi_{gg}(\tau) = \int_{-\infty}^{\infty} S_{gg}(f) e^{j2\pi f\tau} df$$

• The autocorrelation of the received complex envelope $g(t) = g_I(t) + jg_Q(t)$ is

$$\phi_{gg}(\tau) = \frac{1}{2} \mathbf{E}[g^*(t)g(t+\tau)]$$
$$= \phi_{g_Ig_I}(\tau) + j\phi_{g_Ig_Q}(\tau)$$

• The Fourier transform of $\phi_{gg}(\tau)$ gives the Doppler psd

$$S_{gg}(f) = S_{g_I g_I}(f) + j S_{g_I g_Q}(f)$$
.

Sometimes $S_{gg}(f)$ is just called the "**Doppler spectrum**."

Bandpass Doppler Spectrum

• We can also relate the power spectrum of the complex envelope g(t) to that of the band-pass process r(t). We have

$$\phi_{rr}(\tau) = \operatorname{Re}\left[\phi_{gg}(\tau)e^{j2\pi f_c\tau}\right]$$

• By using the identity

$$\operatorname{Re}\left[z\right] = \frac{z + z^*}{2}$$

and the property $\phi_{gg}(\tau) = \phi_{gg}^*(-\tau)$, it follows that the band-pass Doppler psd is

$$S_{rr}(f) = \frac{1}{2} \left[S_{gg}(f - f_c) + S_{gg}(-f - f_c) \right] .$$

• Since $\phi_{gg}(\tau) = \phi_{gg}^*(-\tau)$, the Doppler spectrum $S_{gg}(f)$ is always a real-valued function of frequency, but not necessarily even. However, the band-pass Doppler spectrum $S_{rr}(f)$ is always real-valued and even.

Isotropic Scattering

• For 2-D isotropic scattering, the psd and cross psd of $g_I(t)$ and $g_Q(t)$ are

$$S_{g_{I}g_{I}}(f) = \mathcal{F}[\phi_{g_{I}g_{I}}(\tau)] = \begin{cases} \frac{\Omega_{p}}{2\pi f_{m}} \frac{1}{\sqrt{1 - (\frac{f}{f_{m}})^{2}}} &, & |f| \leq f_{m} \\ 0 &, & \text{otherwise} \end{cases}$$

$$S_{g_{I}g_{Q}}(f) = 0$$

Normalized psd of the quadrature components of the received complex envelope with 2-D isotropic scattering and an isotropic receiver antenna. Sometimes this is called the CLASSICAL Doppler power spectrum.

Non-isotropic Scattering – Rician Fading

• Suppose that the propagation environment consisting of a strong specular component plus a scatter component. The azimuth distribution $p(\theta)$ might have the form

$$p(\theta) = \frac{1}{K+1}\hat{p}(\theta) + \frac{K}{K+1}\delta(\theta - \theta_0)$$

where $\hat{p}(\theta)$ is the continuous AoA distribution of the *scatter* component, θ_0 is the AoA of the specular component, and K is the ratio of the received specular to scattered power.

- One such scattering environment, assumes that the scatter component exhibits 2-D isotropic scattering, i.e., $\hat{p}(\theta) = 1/(2\pi), \theta \in [-\pi, \pi)$.
- The correlation functions $\phi_{g_I g_I}(\tau)$ and $\phi_{g_I g_Q}(\tau)$ are

$$\phi_{g_I g_I}(\tau) = \frac{1}{K+1} \frac{\Omega_p}{2} J_0(2\pi f_m \tau) + \frac{K}{K+1} \frac{\Omega_p}{2} \cos(2\pi f_m \tau \cos \theta_0)$$

$$\phi_{g_I g_Q}(\tau) = \frac{K}{K+1} \frac{\Omega_p}{2} \sin(2\pi f_m \tau \cos \theta_0) \quad .$$

Plot of $p(\theta)$ vs. θ with 2-D isotropic scattering plus a LoS or specular component arriving at angle $\theta_0 = \pi/2$.

• The azimuth distribution

$$p(\theta) = \frac{1}{K+1}\hat{p}(\theta) + \frac{K}{K+1}\delta(\theta - \theta_0)$$

yields a complex envelope having a Doppler spectrum of the form

$$S_{gg}(f) = \frac{1}{K+1} S_{gg}^c(f) + \frac{K}{K+1} S_{gg}^d(f)$$
(1)

where $S_{gg}^d(f)$ is the discrete portion of the Doppler spectrum due to the specular component and $S_{gg}^c(f)$ is the continuous portion of the Doppler spectrum due to the scatter component.

• For the case when $\hat{p}(\theta) = 1/(2\pi), \theta \in [-\pi, \pi]$, the power spectrum of $g(t) = g_I(t) + jg_Q(t)$ is

$$S_{gg}(f) = \begin{cases} \frac{1}{K+1} \cdot \frac{\Omega_p}{2\pi f_m} \frac{1}{\sqrt{1 - (f/f_m)^2}} \\ + \frac{K}{K+1} \frac{\Omega_p}{2} \delta(f - f_m \cos \theta_0) & 0 \le |f| \le f_m \\ 0 & \text{otherwise} \end{cases}$$

• Note the discrete tone at frequency $f_c + f_m \cos \theta_0$ due to the line-of-sight or specular component arriving from angle θ_0 .

Non-isotropic scattering – Other Cases

- Sometimes the azimuth distribution $p(\theta)$ may not be uniform, a condition commonly called non-isotropic scattering. Several distributions have been suggested to model non-isotropic scattering.
- Once possibility is the Gaussian distribution

$$p(\theta) = \frac{1}{\sqrt{2\pi\sigma_S}} \exp\left\{-\frac{(\theta-\mu)^2}{2\sigma_S^2}\right\}$$

where μ is the mean AoA, and σ_S is the rms AoA spread.

• Another possibility is the von Mises distribution

$$p(\theta) = \frac{1}{2\pi I_0(k)} \exp\left[k\cos(\theta - \mu)\right] ,$$

where $\theta \in [-\pi, \pi)$, $I_0(\cdot)$ is the zeroth-order modified Bessel function of the first kind, $\mu \in [-\pi, \pi)$ is the mean AoA, and k controls the spread of scatterers around the mean.

Plot of $p(\theta)$ vs. θ for the von Mises distribution with a mean angle-to-arrival $\mu = \pi/2$.

Calculating the Doppler Spectrum

• The Doppler spectrum can be derived by using a different approach that is sometimes very useful because it can avoid the need to evaluate integrals. The Doppler spectrum can be expressed as

$$S_{gg}(f)|df| = \frac{\Omega_p}{2}(G(\theta)p(\theta) + G(-\theta)p(-\theta))|d\theta| .$$

• The Doppler frequency associated with the incident plane wave arriving at angle θ is

$$f = f_m \cos(\theta) ,$$

and, hence,

$$|df| = f_m| - \sin(\theta)d\theta| = \sqrt{f_m^2 - f^2} |d\theta| .$$

• Therefore,

$$S_{gg}(f) = \frac{\Omega_p/2}{\sqrt{f_m^2 - f^2}} (G(\theta)p(\theta) + G(-\theta)p(-\theta)) ,$$

where

$$\theta = \cos^{-1}\left(f/f_m\right)$$

• Hence, if $p(\theta)$ and $G(\theta)$ are known, the Doppler spectrum can be easily calculated. For example, with 2-D isotropic scattering and an isotropic antenna $G(\theta)p(\theta) = 1/(2\pi)$.

Space-time Correlation Functions

- Many mobile radio systems use antenna diversity, where spatially separated receiver antennas provide multiple faded replicas of the same information bearing signal.
- The spatial decorrelation of the channel tell us the required spatial separation between antenna elements so that they will be "sufficiently" decorrelated.
- Sometimes it is desirable to simultaneously characterize both the spatial and temporal correlation characteristics of the channel, e,g, when using space-time coding. This can be described by the space-time correlation function.
- To obtain the spatial or space-time correlation functions, we must specify some kind of radio scattering geometry.

Spatial Correlation at the Mobile Station

Single-ring scattering model for NLoS propagation on the forward link of a cellular system. The MS is surrounded by a scattering ring of radius R and is at distance D from the BS, where $R \ll D$.

Model Parameters

- O_B : base station location
- O_M : mobile station location
- \bullet D: LoS distance from base station to mobile station
- R: scattering radius
- γ_M : mobile station moving direction w.r.t x-axis
- v: mobile station speed
- θ_M mobile station array orientation w.r.t. *x*-axis
- $A_M^{(i)}$: location of *i*th mobile station antenna element
- δ_M : distance between mobile station antenna elements
- $S_M^{(n)}$: location of *n*th scatterer.
- $\alpha_M^{(n)}$: angle of arrival from the *n*th scatterer.
- ϵ_n : distance $O_B S_M^{(n)}$.
- ϵ_{ni} : distance $S_M^{(n)} A_M^{(i)}$.

• The channel from O_B to $A_M^{(q)}$ has the complex envelope

$$g_q(t) = \sum_{n=1}^{N} C_n e^{j\phi_n - j2\pi(\epsilon_n + \epsilon_{nq})/\lambda_c} e^{j2\pi f_m t \cos(\alpha_M^{(n)} - \gamma_M)}, \ q = 1, 2$$

where ϵ_n and ϵ_{nq} denote the distances $O_B - S_M^{(n)}$ and $S_M^{(n)} - A_M^{(q)}$, q = 1, 2, respectively, and ϕ_n is a uniform random phase on the interval $[-\pi, \pi)$.

• From the Law of Cosines, the distances ϵ_n and ϵ_{nq} can be expressed as a function of the angle-of-arrival $\alpha_M^{(n)}$ as follows:

$$\epsilon_n^2 = D^2 + R^2 + 2DR \cos \alpha_M^{(n)} \text{ Note sign change since the angle is } \pi - \alpha_M^{(n)}$$

$$\epsilon_{nq}^2 = [(1.5 - q)\delta_M]^2 + R^2 - 2(1.5 - q)\delta_M R \cos(\alpha_M^{(n)} - \theta_M), q = 1, 2.$$

• Assuming that $R/D \ll 1$ (local scattering), $\delta_M \ll R$ and $\sqrt{1 \pm x} \approx 1 \pm x/2$ for small x, we have

$$\epsilon_n \approx D + R \cos \alpha_M^{(n)}$$

$$\epsilon_{nq} \approx R - (1.5 - q) \delta_M \cos(\alpha_M^{(n)} - \theta_M) , q = 1, 2$$

• Hence,

$$g_{q}(t) = \sum_{n=1}^{N} C_{n} e^{j\phi_{n} - j2\pi \left(D + R\cos\alpha_{M}^{(n)} + R - (1.5 - q)\delta_{M}\cos(\alpha_{M}^{(n)} - \theta_{M})\right)/\lambda_{c}} \times e^{j2\pi f_{m}t\cos(\alpha_{M}^{(n)} - \gamma_{M})}, q = 1, 2.$$

Space-time Correlation Function

• The space-time correlation function between the two complex faded envelopes $g_1(t)$ and $g_2(t)$ is

$$\phi_{g_1,g_2}(\delta_M,\tau) = \frac{1}{2} \mathbb{E} \left[g_1^*(t) g_2(t+\tau) \right]$$

• The space-time correlation function between $g_1(t)$ and $g_2(t)$ can be written as

$$\phi_{g_1,g_2}(\delta_M,\tau) = \frac{\Omega_p}{2N} \sum_{n=1}^N \mathrm{E}\left[e^{j2\pi(\delta_M/\lambda_c)\cos(\alpha_M^{(n)} - \theta_M)} e^{-j2\pi f_m\tau\cos(\alpha_M^{(n)} - \gamma_M)}\right]$$

- Since the number of scatters is infinite, the discrete angles-of-arrival $\alpha_M^{(n)}$ can be replaced with a continuous random variable α_M with probability density function $p(\alpha_M)$.
- Hence, the space-time correlation function becomes

$$\phi_{g_1,g_2}(\delta_M,\tau) = \frac{\Omega_p}{2} \int_0^{2\pi} e^{jb\cos(\alpha_M - \theta_M)} e^{-ja\cos(\alpha_M - \gamma_M)} p(\alpha_M) d\alpha_M$$

where $a = 2\pi f_m \tau$ and $b = 2\pi \delta_M / \lambda_c$.

2-D Isotropic Scattering

• For the case of 2-D isotropic scattering with an isotropic receive antennas, $p(\alpha_M) = 1/(2\pi), -\pi \le \alpha_M \le \pi$, and the space-time correlation function becomes

$$\phi_{g_1,g_2}(\delta_M,\tau) = \frac{\Omega_p}{2} J_0\left(\sqrt{a^2 + b^2 - 2ab\cos(\theta_M - \gamma_M)}\right) \quad .$$

• The spatial and temporal correlation functions can be obtained by setting $\tau = 0$ and $\delta_M = 0$, respectively. This gives

$$\phi_{g_1,g_2}(\delta_M) = \phi_{g_1,g_2}(\delta_M, 0) = \frac{\Omega_p}{2} J_0(2\pi \delta_M / \lambda_c)$$

$$\phi_{gg}(\tau) = \phi_{g_1,g_2}(0,\tau) = \frac{\Omega_p}{2} J_0(2\pi f_m \tau)$$

• Finally, we note that

$$f_m \tau = \frac{v \cdot \tau}{\lambda_c} = \frac{\delta_M}{\lambda_c}$$

For this scattering environment, the normalized time $f_m \tau$ is equivalent to the normalized distance δ_M / λ_c .

• The antenna branches are uncorrelated if they are separated by $\delta_M \approx 0.5 \lambda_c$.

Temporal and spatial correlation functions at the MS with 2-D isotropic scattering and an isotropic receiver antenna. Note that $f_m \tau = \delta_M / \lambda_c$.

Spatial Correlation at the Base Station

Single-ring scattering model for NLoS propagation on the reverse link of a cellular system. The MS is surrounded by a scattering ring of radius R and is at distance D from the BS, where $R \ll D$.

Model Parameters

- O_B : base station location
- O_M : mobile station location
- \bullet D: LoS distance from base station to mobile station
- R: scattering radius
- γ_M : mobile station moving direction w.r.t x-axis
- v: mobile station speed
- θ_B base station array orientation w.r.t. x-axis
- $A_B^{(i)}$: location of *i*th base station antenna element
- δ_B : distance between mobile station antenna elements
- $S_M^{(m)}$: location of *m*th scatterer.
- $\alpha_M^{(m)}$: angle of departure to the *n*th scatterer.
- ϵ_m : distance $S_M^{(m)} O_B$.
- ϵ_{mi} : distance $S_M^{(m)} A_B^{(i)}$.

• The channel from O_M to $A_B^{(q)}$ has the complex envelope

$$g_q(t) = \sum_{m=1}^{N} C_m e^{j\phi_m - j2\pi(R + \epsilon_{mq})/\lambda_c} e^{j2\pi f_m t \cos(\alpha_M^{(m)} - \gamma_M)}, \ q = 1, 2$$
(2)

where ϵ_{mq} denote the distance $S_M^{(m)} - A_B^{(q)}$, q = 1, 2, and ϕ_m is a uniform random phase on $(-\pi, \pi]$. To proceed further, we need to express ϵ_{mq} as a function of $\alpha_M^{(m)}$.

• Applying the Law of Cosines to the triangle $\Delta S_M^{(m)} O_B A_B^{(q)}$, the distance ϵ_{mq} can be expressed as a function of the angle $\theta_B^{(m)} - \theta_B$ as follows:

$$\epsilon_{mq}^2 = \left[(1.5 - q)\delta_B \right]^2 + \epsilon_m^2 - 2(1.5 - q)\delta_B\epsilon_m \cos(\theta_B^{(m)} - \theta_B) , q = 1, 2 .$$
 (3)

where ϵ_m is the distance $S_M^{(m)} - O_B$.

• By applying the Law of Sines to the triangle $\triangle O_M S_M^{(m)} O_B$ we obtain following identity

$$\frac{\epsilon_m}{\sin \alpha_M^{(m)}} = \frac{R}{\sin \left(\pi - \theta_B^{(m)}\right)} = \frac{D}{\sin \left(\pi - \alpha_M^{(m)} - \left(\pi - \theta_B^{(m)}\right)\right)} \ .$$

• Since the angle $\pi - \theta_B^{(m)}$ is small, we can apply the small angle approximations $\sin x \approx x$ and $\cos x \approx 1$ for small x, to the second equality in the above identity. This gives

$$\frac{R}{(\pi - \theta_B^{(m)})} \approx \frac{D}{\sin\left(\pi - \alpha_M^{(m)}\right)}$$

or

$$(\pi - \theta_B^{(m)}) \approx (R/D) \sin(\pi - \alpha_M^{(m)})$$
.

• It follows that the cosine term in (2) becomes

$$\cos(\theta_B^{(m)} - \theta_B) = \cos(\pi - \theta_B - (\pi - \theta_B^{(m)}))$$

$$= \cos(\pi - \theta_B)\cos(\pi - \theta_B^{(m)}) + \sin(\pi - \theta_B)\sin(\pi - \theta_B^{(m)})$$

$$\approx \cos(\pi - \theta_B) + \sin(\pi - \theta_B)(R/D)\sin(\pi - \alpha_M^{(m)})$$

$$= -\cos(\theta_B) + (R/D)\sin(\theta_B)\sin(\alpha_M^{(m)})$$
(4)

• Using the approximation in (4) in (2), along with $\delta_B/\epsilon_m \ll 1$, gives

$$\epsilon_{mq}^2 \approx \epsilon_m^2 \left[1 - 2(1.5 - q) \frac{\delta_B}{\epsilon_m} \left[(R/D) \sin(\theta_B) \sin(\alpha_M^{(m)}) - \cos(\theta_B) \right] \right]$$

• Applying the approximation $\sqrt{1 \pm x} \approx 1 \pm x/2$ for small x, we have

$$\epsilon_{mq} \approx \epsilon_m - (1.5 - q)\delta_B \left[(R/D)\sin(\theta_B)\sin(\alpha_M^{(m)}) - \cos(\theta_B) \right] .$$
(5)

• Applying the Law of Cosines to the triangle $\triangle O_M S_M^{(m)} O_B$ we have

$$\begin{aligned} \epsilon_m^2 &= D^2 + R^2 - 2DR\cos(\alpha_M^{(m)}) \\ &\approx D^2 \left[1 - 2(R/D)\cos(\alpha_M^{(m)}) \right] \end{aligned}$$

and again using the approximation $\sqrt{1 \pm x} \approx 1 \pm x/2$ for small x, we have

$$\epsilon_m \approx D - R\cos(\alpha_M^{(m)}) \tag{6}$$

,

• Finally, using (5) in (4) gives

$$\epsilon_{mq} \approx D - R\cos(\alpha_M^{(m)}) - (1.5 - q)\delta_B \left[(R/D)\sin(\theta_B)\sin(\alpha_M^{(m)}) - \cos(\theta_B) \right] .$$
(7)

• Substituting (7) into (2) gives the result

$$g_{q}(t) = \sum_{m=1}^{N} C_{m} e^{j\phi_{m} + j2\pi f_{m}t \cos(\alpha_{M}^{(m)} - \gamma_{M})}$$

$$\times e^{-j2\pi \left(R + D - R\cos(\alpha_{M}^{(m)}) - (1.5 - q)\delta_{B} \left[(R/D)\sin(\theta_{B})\sin(\alpha_{M}^{(m)}) - \cos(\theta_{B}) \right] \right) / \lambda_{c}},$$
(8)

which no longer depends on the ϵ_{mq} and is a function of the angle of departure $\alpha_M^{(m)}$.

Space-time Correlation Function

• The space-time correlation function between the two complex faded envelopes $g_1(t)$ and $g_2(t)$ at the BS is once again given by

$$\phi_{g_1,g_2}(\delta_B,\tau) = \frac{1}{2} \mathbb{E} \left[g_1^*(t) g_2(t+\tau) \right]$$

Using (8), the space-time correlation function between $g_1(t)$ and $g_2(t)$ can be written as

$$\phi_{g_1,g_2}(\delta_B,\tau) = \frac{\Omega_p}{2N} \sum_{m=1}^N \mathbb{E}\left[e^{j2\pi(\delta_B/\lambda_c)\left[(R/D)\sin(\theta_B)\sin(\alpha_M^{(m)}) - \cos(\theta_B)\right]} \times e^{-j2\pi f_m \tau \cos(\alpha_M^{(m)} - \gamma_M)}\right].$$

- Since the number of scatters around the MS is infinite, the discrete angles-of-departure $\alpha_M^{(m)}$ can be replaced with a continuous random variable α_M with probability density function $p(\alpha_M)$.
- Hence, the space-time correlation function becomes.

$$\phi_{g_1,g_2}(\delta_B,\tau) = \frac{\Omega_p}{2} \int_{-\pi}^{\pi} e^{-ja\cos(\alpha_M - \gamma_M)} e^{jb[(R/D)\sin(\theta_B)\sin(\alpha_M) - \cos(\theta_B)]} p(\alpha_M) d\alpha_M ,$$

where $a = 2\pi f_m \tau$ and $b = 2\pi \delta_B / \lambda_c$.

2-D Isotropic Scattering

• For the case of 2-D isotropic scattering with an isotropic MS transmit antenna, $p(\alpha_M) = 1/(2\pi), -\pi \leq \alpha_M \leq \pi$, and the space-time correlation function becomes

$$\phi_{g_1,g_2}(\delta_B,\tau) = \frac{\Omega_p}{2} e^{-jb\cos(\theta_B)} \\ \times J_0\left(\sqrt{a^2 + b^2(R/D)^2\sin^2(\theta_B) - 2ab(R/D)\sin(\theta_B)\sin(\gamma_M)}\right)$$

- The spatial and temporal correlation functions can be obtained by setting $\tau = 0$ and and $\delta_B = 0$, respectively.
- The temporal correlation function $\phi_{gg}(\tau) = \phi_{g_1,g_2}(0,\tau) = \frac{\Omega_p}{2} J_0(2\pi f_m \tau)$ which matches our result for the received signal at a mobile station.
- The spatial correlation function is

$$\phi_{g_1,g_2}(\delta_B) = \phi_{g_1,g_2}(\delta_B, 0) = \frac{\Omega_p}{2} e^{-jb\cos(\theta_B)} J_0(b(R/D)\sin(\theta_B))$$
$$= \frac{\Omega_p}{2} e^{-jb\cos(\theta_B)} J_0\left((2\pi\delta_B/\lambda_c)(R/D)\sin(\theta_B)\right)$$

• Observe that a much greater spatial separation is required to achieve a given degree of envelope decorrelation at the BS as compared to the MS. This can be readily seen by the term $R/D \ll 1$ in the argument of the Bessel function.

Envelope crosscorrelation magnitude at the base station for different base station antenna orientation angles, θ_B ; D = 3000 m, R = 60 m. Broadside base station antennas have the lowest crosscorrelation.

Envelope crosscorrelation magnitude at the base station for $\theta_B = \pi/3$ and various scattering radii, R; D = 3000 m. Smaller scattering radii will result in larger a crosscorrelations.