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Personal & Mobile Communications

Week 5

Level Crossing Rate and Average Fade Duration
Statistical Channel Modeling

Fading Simulators

Reading: Chapter 2, 2.1.5, 2.3, 2.5.1, 2.5.2



Level Crossing Rate and Average Fade Duration

e The level crossing rate (LCR) at a specified envelope level R, Lg, is defined as the rate
(in crossings per second) at which the envelope a crosses the level R in the positive going
direction.

— The LCR can be used to estimate velocity, and velocity can be used for radio resource
management.

e The average fade duration (AFD) is the average duration that the envelope remains
below a specified level R.

— An outage occurs when the envelope fades below a critical level for a long enough period
such that receiver synchronization is lost. Longer fades are usually the problem.
— The probability distribution of fade durations, if it exists, would allow us to calculate

probability of outage.

e Both the LCR and AFD are second-order statistics that depend on the mobile station velocity,
as well as the scattering environment.

e The LCR and AFD have been derived by Rice (1948) in the context of a sinusoid in narrow-
band Gaussian noise.
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Level Crossing Rate

e Obtaining the level crossing rate requires the joint pdf, p(a, &), of the envelope level o =
|g(t1)| and the envelope slope & = d|g(t1)|/dt at any time instant ¢,. Note we drop the
time index t for convenience.

e In terms of p(a, &), the expected amount of time the envelope lies in the interval (R, R+ d«)
for a given envelope slope & and time increment dt is

p(R, &)dadadt

e The time required for the envelope « to traverse the interval (R, R+ da) “once” for a given
envelope slope @ is

do/c

e The ratio of the above two quantities is the expected number of crossings of the envelope «
within the interval (R, R + da) for a given envelope slope ¢ and time duration dt, i.e.,

ap(R, &) deudt



e The expected number of crossings of the envelope level R for a given envelope slope & in a
time interval of duration T' is

[ ap(R, &)dadt = ép(R, ¢)daT

e The expected number of crossings of the envelope level R with a positive slope in the time

interval 71" is
Np=T [~ ap(R,d)dé .

e Finally, the expected number of crossings of the envelope level R per second, or the level
crossing rate, is obtained by dividing by the length of the interval T as

Lp= |~ ép(R,d)dd

e This is a general result that applies to any random process characterized by the joint pdf
pla, &).



e Rice (BSTJ, 1948) derived the joint pdf p(a, &) for a sine wave plus Gaussian noise. A
Rician fading channel can be thought of LoS or specular (sine wave) component plus a
scatter (Gaussian noise) component. For the case of a Rician fading channel,

)32
pla, &) = \/m / do

Q;b [B (a2 — 2as cos 0 + 32) + (bocx + by ssin 9)2}}
0

X exp {—
where s is the non-centrality parameter in the Rice distribution, and B = byby — b7, where

by, b1, and by are constants that depend on the scattering environment.

e Suppose that the specular or LoS component of the complex envelope g(t) has a Doppler
frequency equal f, = f,, cos €y, where 0 < |f,| < fi,. Then

by = (r)" [ Se () = f,)df
= (21)"by [ DO)G(6) (f cos8 — f,)" b

where p(0) is the azimuth distribution (pdf) of the scatter component, G(6) is the antenna
gain pattern, and Sgg( f) is the corresponding continuous portion of the Doppler power spec-
trum.

— Note that the pdf p(f) in this case integrates to unity.



e Note that S7 (f) is given by the Fourier transform of ¢¢ (1) = ¢, (7) + j¢gIgQ(7') where

c (1) = y o cos(27 fr, 7 cos 0)p(0)G(6)dO

9grgr 2 Jo
c €, o . ~
919Q (r) = ?p 0 sin(27 f,, 7 cos 0)p(0) G (0)do

e [n some special cases, the psd S7,(f) is symmetrical about the frequency f, = fi, cosflp. This
condition occurs, for example, when f, =0 (6p = 90°) and p(d) = 1/(27), —7m < 0 < 7.
— Specular component arrives perpendicular to direction of motion and scatter component

is characterized by 2-D isotropic scattering.
— In this case, b, = 0 for all odd values of n (and in particular by = 0) so that the joint pdf

p(a, &) reduces to the convenient product form

= p(a) - pla) .

— Since p(a, &) = p(a) - pla), it follows that o and & are independent for this special

case.



e When f, = 0 and p(d) = 1/(27), a closed form expression can be obtained for the envelope
level crossing rate.

e We have that

246 - n

b by (27 f ) 222 (=1 1 even
" 0 n odd

e Therefore, by = 0 and by = by(27 f,,)?/2, and
L(R) = \/27T<K + 1)fmpe_K_(K+1)p210 <2p\/K(K + 1))

R R
" R
and Rums 2 /E[a?] is the rms envelope level.

e Under the further condition that K = 0 (Rayleigh fading)
L(R) =+ 27Tfmpe_p2

where

e Notice that the level crossing rate is directly proportional to the maximum Doppler frequency
fm and, hence, the MS speed v = f,, A
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Normalized level crossing rate for Rician fading. A specular component arrives with angle
6y = 90° and there is 2-D 1isotropic scattering of the scatter component.



Average Fade Duration

e No known probability distribution exists for the duration of fades; this is a long standing
open problem! Therefore, we consider the “average fade duration”.

e Consider a very long time interval of length 7', and let ¢; be the duration of the ¢th fade
below the level R.

e The probability that the received envelope « is less than R is
1
Pria < R| = =>t;
o< K= 5%

e The average fade duration is equal to

. total length of time in duraton 71" that the envelope is below level R
average number of crossings in duration T’
R
TL(R)
Prla < R]
L(R)
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e If the envelope is Rician distributed, then
tla < Rl = [ p( azl—Q<\/2K,\/2(K—I—1)p2>

where Q(a, b) is the Marcum Q function.

o If we again assume that f, = 0 and p(f) = 1/(27), we have
—Q (V2K \2(K +1)p?)
\/27T<K + 1) frupe K—(E+DA [ (Qp\/K(K + 1))

o If we further assume that K = 0 (Rayleigh fading), then

F—

2

Pla < R] = /0 Jdao = 1—¢e7”

and
2

el —1

pfmV2m
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Normalized average fade duration with Ricean fading.
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Scattering Mechanism for Wideband Channels
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Concentric ellipses model for frequency-selective fading channels.

e Frequency-selective (wide-band) channels have strong scatterers that are located on several
ellipses such that the corresponding differential path delays 7; —7; for some ¢, j, are significant
compared to the modulated symbol period T
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Transmission Functions

e Multipath fading channels are time-variant linear filters, whose inputs and outputs can be
described in the time and frequency domains.

e There are four possible transmission functions

— Time-variant channel impulse response g(t, 7)
— Output Doppler spread function H(f, v/)
— Time-variant transfer function T'(f,t)

— Doppler-spread function S(7, v)
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Time-variant channel impulse response, g(t¢,7)

e Also known as the input delay spread function.

e The time varying complex channel impulse response relates the input and output time domain
waveforms

F(t) = /Otg(t, T)8(t — 7)dT

— In physical terms, g(¢, 7) can be interpreted as the channel response at time t due to an
impulse applied at time ¢ — 7. Since a physical channel is causal, g(t,7) = 0 for 7 < 0
and, therefore, the lower limit of integration in the convolution integral is zero.

e The convolution integral can be approximated in the discrete form

F(t) = izo g(t, mAT)3(t — mAT)AT

s(t)

At At At At
<>§Zj(t ,0) >Ség(t ,AT) CX);(t, 2AT) <>§g;(t, 3A1) <>§;(t, 4AT)
£ o

) )

Discrete-time tapped delay line model for a multipath-fading channel.
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Transfer Function, T'(f,1)

e The transfer function relates the input and output frequencies:
R(f)=S(f)T(f.1)
e By using an inverse Fourier transform, we can also write

= [ S(NHT(f, t)e> T df

e The time-varying channel impulse response and time-varying channel transfer function are
related through the Fourier transform:

g(t,7) = T(f,1)

— Note: the Fourier transform pair is with respect to the time-delay variable 7. The Fourier
transform of ¢(¢, 7) with respect to the time variable ¢ gives the Doppler spread function
S(t,v), ie,

g(t,7) <= S(7,v)
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Fourier transform relations between the system functions.
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Statistical Correlation Functions

e Similar to flat fading channels, the channel impulse response ¢(t, 7) = ¢;(t, 7) + jgo(t, 7) of
frequency-selective fading channels can be modelled as a complex Gaussian random process,
where the quadrature components g(¢, 7) and go(t, 7) are Gaussian random processes.

e The transmission functions are all random processes. Since the underlying process is Gaus-
sian, a complete statistical description of these transmission functions is provided by their
means and autocorrelation functions.

e Four autocorrelation functions can be defined

¢q(t,s;7,m) = Elg*(t,7)g(s,n)]
¢T(f,m t ,s) = E[T"(f,t)T(m,s)]
ou(fym;v,p) = EH(f,v)H(m, u)]
¢s(T,myv,p) = ES™(,v)S(n, p)] -

e Related through double Fourier transform pairs

ds(Tmvp) = [ [ oyt siT,m)e PV dtds
Oyt s;mom) = [ 7 sl v, p)e™ ) dudy
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Fourier Transforms and Correlation Functions
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Double Fourier transform relations between the channel correlation functions.
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WSSUS Channels

e Uncorrelated scattering in both the time-delay and Doppler shift domains.
e Practical land mobile radio channels are characterized by this behavior.

e Due to uncorrelated scattering in time-delay and Doppler shift, the channel correlation func-
tions become:

Gg(t, t + At; 1,1
or(f, f+ Afit t+ At

¢H<f7f+Af7V7M
Gs(T,m; v,

) = Yy(At;7)(n — 7)

) = or(Af; At)

) = Yu(Afiv)o(v — p)

) = s(T,v)d(n —7)o(v —p) .

e Note the singularities §(n — 7) and §(v — p) with respect to the time-delay and Doppler shift
variables, respectively.

e Some correlation functions are more useful than others. The most useful functions:

— 1,(At; 7): channel correlation function
— ¢r(Af; At): spaced-time spaced-frequency correlation function

— g(7,v): scattering function
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Fourier Transforms for WSSUS Channels
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Power Delay Profile

e The autocorrelation function of the time varying impulse response is

Oyt t+ At T,n) = Elg*(¢,7)g(t + At, )]
= Yg(At;T)o(n —7)
Note the WSS assumption.

e The function ¢, (0; 7) = 1,(7) is called the multipath intensity profile or power delay
profile.

e The average delay /. is the mean value of ¢,(7), i.e.,

_ Ige Ty (T)dT
e Io° ¢g(7')d7'

e The rms delay spread o is defined as the variance of ¢,(7), i.e.,

o J (T — )Pty (r)dT
' J§2 Py (T)dT
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System Correlation Function

e The time autocorrelation function of the channel output 7(t) is

brrltt+ A) = 1E[f*(t>f(t+ A
= —E ) g )F (= a)da x [ glt+ Ay, B)(t+ A= BB
= /o "M Bt a)glt + A, B)] %E 5*(t — @)5(t + Ay — B)] dadB
= L1 (80 0)3(6 — ) B[ — @)t + A - §))dads
= [ (A a)§E 5°(t — a)d(t + A — a)] da

= [ y(A @)ess(t — oyt —a+ A)da
VgD t) x dss(t, t + Ay)

where

sltst+ B) = SB[ (0(+ A

e The output time autocorrelation function is the convolution of the channel correlation func-
tion 10,(A¢; ) and the correlation function of the input waveform.
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Simulation of Multipath-Fading Channels

e Computer simulation models are needed to generate the faded envelope with the statistical
properties of a chosen reference model, i.e., a specified Doppler spectrum.

e Generally there are two categories of fading channel simulation models

— Filtered-White-Noise models that pass white noise through an appropriate filter

— Sum-of-Sinusoids models that sum together sinusoids having different amplitudes, fre-
quencies and phases.

e Model accuracy vs. complexity is of concern

— It is desirable to generate the faded envelope with low computational complexity while
still maintaining high accuracy with respect to the chosen reference model.
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Filtered White Noise

e Since the complex faded envelope can be modelled as a complex Gaussian random process,
one approach for generating the complex faded envelope is to filter a white noise process with
appropriately chosen low pass filters

white Gaussian LPF %( Y
noise H(f)
=
g(t)=9g(t)+] %(t)
white Gaussian LPF
noise H(f) gu(t)

e If the Gaussian noise sources are uncorrelated and have power spectral densities of €2, /2 watts/Hz,
and the low-pass filters have transfer function H(f), then

Q)
nggl(f) - SQQQQOC):?]D‘H(]E)F
SQIQQ(f) = 0

e T'wo approaches: IR filtering method and IFFT filtering method
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IIR Filtering Method

e implement the filters in the time domain as finite impulse response (FIR) or infinite impulse
response (IIR) filters. There are two main challenges with this approach.

— the normalized Doppler frequency;, fm = fT,, where T is the simulation step size, is
very small.

« This can be overcome with an infinite impulse response (IIR) filter designed at a lower
sampling frequency followed by an interpolator to increase the sampling frequency.

— The second main challenge is that the square-root of the target Doppler spectrum for
2-D isotropic scattering and an isotropic antenna is irrational and, therefore, none of the
straightforward filter design methods can be applied.

x One possibility is to use the MATLAB function iirlpnorm to design the required
filter.
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IIR Filtering Method

e Here we consider an IIR filter of order 2K that is synthesized as the the cascade of K
Direct-Form II second-order (two poles and two zeroes) sections (biquads) having the form
K 1+ akz_l + bkz_Q

H(z)=A
(2) ;{g 1+ cpzt +dpz2

For example, for f,, Ty = 0.4, K = 5, and an ellipsoidal accuracy of 0.01, we obtain the
coefficients tabulated below

Coefficients for K =5 biquad stage elliptical filter, f,,Ts = 0.4, K =5

Stage Filter Coefficients

k ‘ ag bk Ck dk
1 1.5806655278853 0.99720549234156 -0.64808639835819 0.88900798545419
2 0.19859624284546 0.99283177405702 -0.62521063559242 0.97280125737779
3 -0.60387555371625 0.9999939585621 -0.62031415619505 0.99996628706514
4 -0.56105447536557 0.9997677910713 -0.79222029531477 0.2514924845181
5 -0.39828788982331 0.99957862369507 -0.71405064745976 0.64701702807931
A 0.020939537466725
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IIR Filtering Method
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IFFT Filtering Method

N 1.1.d. Gaussian
random variables

{A[k]}| Multiply by the

N 1.1.d. Gaussian
random variables

A 4

filter coefficients
{H[k]}

Multiply by the

A 4

filter coefficients
{B[k]} {H[k]}

{Glk]} N-point
IDFT

{g(n)}

IDFT-based fading simulator.
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e To implement 2-D isotropic scattering, the filter H[k] can be specified as follows:
0 , k=0

\/27rfm\/1 /(N fn))2

\/km [% — arctan (\//%;1_1)] . k=k,

0 Ck=k,+t1,....N—Fk,—1

o [3 — arctan (2=L)| k=N —k,

]

¢ L . N—k,+1,...,N—1
27 frn A/ 1—(N—k /(N fin))?

e One problem with the IFF'T method is that the faded envelope is discontinuous from one
block of N samples to the next.



Sum of Sinusoids (SoS) Methods - Clarke’s Model

e With N equal strength (C),, = /1/N) arriving plane waves

N . ;
g(t) _ ll/N > ej(27rfmtcosen+<bn)
n=1

N . N .
= J1/N Y cos(2m ft cos O, + &) + jJ1/N X sin(2w ft cosO, + ¢,) (1)
n=1 n=1
= 91(t) + jgo(t)
(2)
e The normalization C,, = \/1/N makes €2, = 1.

e The phases &, are independent and uniform on |—7, 7).

e With 2-D isotropic scattering, the #,, are also independent and uniform on [—7, 7), and are
independent of the ¢,,.

e Types of SoS simulators

— deterministic - {6,} and {,} are fixed for all simulation runs.
— statistical - either {6,} or {¢,}, or both, are random for each simulation run.

— ergodic statistical - either {6, } or {&,}, or both, are random, but only a single simulation
run is required.
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Clarke’s Model - Ensemble Averages

e The statistical properties of Clarke’s model in for finite N are

1
Dgrgr(T) = ¢9Q9Q(T) = §J0(277fm7-)
%JQQ T) = %QQI(T) =0

)

)
Buo(r) = 5 Jo(2mfour)
(7) = Bllgl’()lgf(¢ +7)
N -1

N ‘]3(27Tfm7_)

= 1+

e For finite IV, the ensemble averaged auto- and cross-correlation of the quadrature components
match those of the 2-D isotropic scattering reference model.

e The squared envelope autocorrelation reaches the desired form 1+ J3(27 f,,,7) asymptotically
as N — 0.
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Clarke’s Model - Time Averages

e In simulations, time averaging is often used in place of ensemble averaging. The corresponding
time average correlation functions ¢(+) (all time averaged quantities are distinguished from
the statistical averages with a ‘") are random and depend on the specific realization of the
random parameters in a given simulation trial.

e The variances of the time average correlation functions, defined as

Var[(-)] = E| |

characterizes the closeness of a simulation trial with finite N and the ideal case with N — oo.

¢() — lm o)

~ 2
N — oo |

e These variances can be derived as follows:

Var[égjgj(T)} - VMHEQQQQ(T)]
1+ Jo(4m frnT) — 2J5 (2 frnT)
SN

Var[gggw@(ﬂ] = Var[qggQgI (7)]
1 — Jo(4m fonT)

SN
1 — J22nm fuT)
AN

Var[gg, ()] =
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Jakes’ Deterministic Method

e To approximate an isotropic scattering channel, it is assumed that the N arriving plane waves
uniformly distributed in angle of incidence:

0,=2mn/N, n=1,2,..., N

e By choosing N/2 to be an odd integer, the sum in (2) can be rearranged into the form

1 N/2-1

g(t) _ - Z le—j(Qﬂfmtcosﬁn—i—(%_n) + ej(Qmetcosﬁng%n)]
N n=1
_|_€_j(27rfmt+¢—N) + ej(Qmet‘l‘QSN) (3)

e The Doppler shifts progress from —2m f,,, cos(2m/N) to +2m f,, cos(2w /N ) as n progresses
from 1 to IV/2—1 in the first sum, while in the second sum they progress from 427 f,,, cos(27 /N
to —27 f,, cos(2mw /N).

e Jakes uses nonoverlapping frequencies to write g(t) as

( ) f [ ¢ n+27 fint cos Oy) 4+ ej((bn—l—Qﬂfmtcosﬁ )]
Nn 1
Lo i (Oont2mfmt) | i (dn+2m fimt) n
where .
-y
2\ 2

and the factor v/2 is included so that the total power remains unchanged.
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e Note that (3) and (4) are not equal. In (3) all phases are independent. However, (4) implies
that ¢, = —¢_njo4n and ¢, = —@njo_, for n = 1,..., M. This introduces correlation
into the phases

e Jakes’ further imposes the constraint gﬁn = —qg_n and gﬁN = —qg_ ~ (but with further corre-
lation introduced in the phases) to give

g(t) = @ { {2 % cos B, cos 27 ft + V2 cos a cos Qmet}

n=1

. M . .
+7 {2 S sin 3, cos 27 fot + /2 sin « cos 2 fmt] }
n=1

where

a:qg]\f: Bn:qgn
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e Time averages:

PR 2
2 Y cos” B, + cos” «
n=1

2o 2]

r M
M +cos?a+ Y cos 264
L n=1

PRELA . 9
2 > sin“ 8, +sin” «

L n=1

i M
M +sina— Y cos 26,1}

n=1

2o 2]

9 M
< gr(t)go(t) > = ¥ 2 Y sin (3, cos B, + sin a cos
n=1

e Choose the (, and « so that g;(t) and go(t) have zero-mean, equal variance, and zero
cross-correlation.

e The choices v = 0 and 8, = wn/M will yield < g(t) >= M/(2M + 1), < gj(t) >=
(M +1)/(2M + 1), and < g;(t)go(t) >= 0.

e Note the small imbalance in the values of < g3)(t) > and < g7(t) >.

e The envelope power is < g7(t) > + < g(t) >= Q, = 1. The envelope power can be
changed to any other desired value by scaling ¢(t), i.e., /€2,¢(t) will have envelope power €2,,.
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Typical faded envelope generated with 8 oscillators and f,,, T = 0.1,
where 1" seconds is the simulation step size.
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Auto- and Cross-correlations

e The normalized autocorrelation function is
n Elg*(t)g(t + 7)]
Dpy(T) =

Ellg(®)[?]

e With 2-D isotropic scattering

0
¢9191<7) - ¢9Q9Q<T) — ?pJO (27Tfm7_)

¢919Q(7-) = ¢9Q91(T) =0
e Therefore,

no Elg*(t)g(t+7)]
%ul™) = TElg0n

= Jo 27 f,7)
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Auto- and Cross-correlations

e For Clarke’s model with angles 6,, that are independent and uniform on [—m, 7), the normal-
ized autocorrelation function is

Elg"(t)g(t + 7)]
"(T) = = Jo2mw fu7) .
oD = Efgtp T
e Clark’s model with even N and the restriction 6, = %T”, yields the normalized ensemble
averaged autocorrelation function
1 N 2
0(T) = o nz::1 COS (27T fmT cos %)
— Clark’s model with 6, = 2%” yields an autocorrelation function that deviates from the

desired values at large lags.

e Finally, the normalized time averaged autocorrelation function for Jakes” method is

n 1
Gyt t+7) = N (cos 27 fi T 4 cos 27 fr, (2t + 7))

1 M
+ > (cos2m f,7 + cos 2 f, (2t + 7))
n=1

— Jakes’ fading simulator is not stationary or even wide-sense stationary.
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Autocorrelation, @, (1)
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TimeDéelay, f 1

Autocorrelation of inphase and quadrature components obtained with Clarke’s method, using

0, = 2”7” and N = 8 oscillators.
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1.0

—— Simulation

Autocorrelation, @, (1)

-1.0 — ‘ ‘
0 2 4 6 8 10 12
TimeDéelay, f 1

Autocorrelation of inphase and quadrature components obtained with Clarke’s method, using

0, = %T" and N = 16 oscillators.
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