EE6604

Personal & Mobile Communications

Week 6

Fading Simulators,

Wideband and COST 207 Models,

Baud-Spaced Channel Models

Reading: 2.5

Method of Exact Doppler Spreads - Deterministic

- Patzold proposed a deterministic simulation model, called the "Method of Exact Doppler Spreads (MEDS)".
- The method is derived by using the integral representation for the zero-order Bessel function of the first kind

$$J_0(x) = \frac{2}{\pi} \int_0^{\pi/2} \cos(x \sin \theta) d\theta$$

and replacing the integral by a series expansion as follows:

$$J_0(x) = \lim_{N_I \to \infty} \frac{2}{\pi} \sum_{n=1}^{N_I} \cos(x \sin \alpha_n) \Delta_\alpha$$

where $\alpha_n \triangleq \pi (2n-1)/(4N_I)$ and $\Delta_\alpha \triangleq \pi/(2N_I)$.

• Hence,

$$\phi_{g_I g_I}(\tau) = \frac{1}{2} J_0(2\pi f_m \tau) = \lim_{N_I \to \infty} \frac{1}{2N_I} \sum_{n=1}^{N_I} \cos(2\pi f_{n,i} \tau)$$

where

$$f_{n,I} = f_m \sin\left[\frac{\pi}{2N_I}\left(n - \frac{1}{2}\right)\right]$$

•

• With finite N_I , the normalized autocorrelation is

$$\phi_{g_{I}g_{I}}^{n}(\tau) = \frac{1}{N_{I}} \sum_{n=1}^{N_{I}} \cos(2\pi f_{n,I}\tau)$$

Method of Exact Doppler Spreads - Deterministic

• The complex fading envelope is $g(t) = g_I(t) + jg_Q(t)$, where

$$g_{I/Q}(t) = \sqrt{\frac{1}{N_{I/Q}}} \sum_{n=1}^{N_{I/Q}} \cos(2\pi f_{I/Q,n}t + \phi_{I/Q,n}) .$$

• The deterministic processes $g_I(t)$ and $g_Q(t)$ are uncorrelated if and only if $f_{I,n} \neq f_{Q,m}$ for all $n = 1, \ldots, N_I$ and $m = 1, \ldots, N_Q$.

- This can be achieved by setting $N_Q = N_I + 1$.

- If $g_I(t)$ and $g_Q(t)$ are uncorrelated, the phases $\phi_{I/Q,n}$ have no influence on the statistical properties of g(t).
 - Hence, the $\phi_{I/Q,n}$ can be chosen as arbitrary realizations of uniform random variables on $[-\pi,\pi)$.

Zheng and Xiao's Model - Statistical

• The complex fading envelope is $g(t) = g_I(t) + jg_Q(t)$, where

$$g_I(t) = \sqrt{\frac{1}{N}} \sum_{n=1}^N \cos[2\pi f_m t \cos(\theta_n) + \phi_{I,n}]$$

$$g_Q(t) = \sqrt{\frac{1}{N}} \sum_{n=1}^N \cos[2\pi f_m t \sin(\theta_n) + \phi_{Q,n}]$$

where the angles are

$$\theta_n = \frac{2\pi n - \pi + \theta}{4N}, \qquad n = 1, 2, \dots, N$$

where θ , $\phi_{I,n}$, and $\phi_{Q,n}$ are all uniform on $[-\pi, \pi)$, and all values are mutually independent.

- The statistical correlation functions of the quadrature components $\phi_{g_Ig_I}(\tau)$, $\phi_{g_Ig_Q}(\tau)$, $\phi_{gg}(\tau)$ match the desired functions.
- The autocorrelation function of the squared envelope is

$$\phi_{|g|^{2}|g|^{2}}(\tau) = 4 + \frac{J_{0}(4\pi f_{m}\tau)}{N} + \frac{4}{N^{2}} \sum_{n=1}^{N} \sum_{\substack{m=1\\n \neq m}}^{N} E\{\cos[2\pi f_{m}\tau\cos\theta_{n}]\cos[2\pi f_{m}\tau\cos\theta_{m}]\}$$

Modified Hoeher Model - Statistical

• Consider the complex faded envelope $g(t) = g_I(t) + jg_Q(t)$, where

$$g_{I}(t) = \sqrt{\frac{1}{N}} \sum_{n=1}^{N_{I}} \cos(2\pi f_{I,n}t + \phi_{I,n})$$

$$g_{Q}(t) = \sqrt{\frac{1}{N}} \sum_{m=1}^{N_{Q}} \cos(2\pi f_{Q,m}t + \phi_{Q,m})$$

and

$$f_{I/Q,n/m} = f_m \sin\left(\frac{\pi}{2}u_{I/Q,n/m}\right)$$

- The Doppler frequencies $f_{I/Q,n/m}$ for the *I* and *Q* components are determined by $u_{I/Q,n/m}$, where the $u_{I/Q,n/m}$ are uniform on (0, 1] and are mutually independent for all *n* and *m*. The random phases $\phi_{I/Q,n/m}$ are uniform on $[-\pi, \pi)$, are mutually independent for all *n* and *m*, and are also independent of the $u_{I/Q,n/m}$.
- For convenience, the number of sinusoids in the quadrature components are usually set equal, i.e., $N_I = N_Q = N$.

- (MEDS) and the modified Hoeher model are similar
 - The set of numbers $\{(n 1/2)/N_I, i = 1, ..., N_I\}$ are uniformly spaced on the interval (0, 1], while the $u_{I/Q,n/m}$ are uniformly distributed on the interval (0, 1].
- The statistical correlation functions for the quadrature components match the desired values.
- The squared envelope correlation is

$$\phi_{|g|^2|g|^2}(\tau) = 4 + 4\frac{N-1}{N}J_0^2(2\pi f_m\tau) + \frac{1}{N}J_0(4\pi f_m\tau)$$

which differs from the ideal value for finite N.

Multiple Faded Envelopes - Zheng & Xiao Model

- The Zheng & Xiao statistical method can be easily extended to generate multiple faded envelopes.
- The kth complex envelope, $g_k(t) = g_{I,k}(t) + jg_{Q,k}(t)$, is generated as

$$g_{I,k}(t) = \sqrt{\frac{1}{N}} \sum_{n=1}^{N} \cos[2\pi f_m t \cos(\theta_{n,k}) + \phi_{I,n,k}]$$

$$g_{Q,k}(t) = \sqrt{\frac{1}{N}} \sum_{n=1}^{N} \cos[2\pi f_m t \sin(\theta_{n,k}) + \phi_{Q,n,k}]$$

where

$$\theta_{n,k} = \frac{2\pi n - \pi + \theta_k}{4N}, \qquad n = 1, 2.., N$$

and where θ_k , $\phi_{I,n,k}$, and $\phi_{Q,n,k}$ are all uniform on $[-\pi,\pi)$, and all values are mutually independent.

• The $g_k(t)$ are all uncorrelated.

Multiple Faded Envelopes - Li & Huang Model

- Assume that P uncorrelated fading envelopes are required, each composed of N sinusoids.
- The kth faded envelope, $g_k(t) = g_{I,k}(t) + jg_{Q,k}(t)$, is generated as

$$g_{I,k}(t) = \sqrt{\frac{1}{N}} \sum_{n=0}^{N-1} \cos(2\pi f_m \cos \theta_{n,k} t + \phi_{n,k})$$

$$g_{Q,k}(t) = \sqrt{\frac{1}{N}} \sum_{n=0}^{N-1} \sin(2\pi f_m \sin \theta_{n,k} t + \phi'_{n,k})$$

• The phases $\phi_{n,k}$ and $\phi'_{n,k}$ arbitrary realizations of independent random variables uniform on $[-\pi, \pi)$, and

$$\theta_{n,k} = \frac{2\pi n}{N} + \frac{2\pi k}{PN} + \theta_{00}, \quad n = 0, \dots, N, k = 0, \dots, P-1$$

where θ_{00} is an initial arrival angle chosen to satisfy $0 < \theta_{00} < 2\pi/PN$ and $\theta_{00} \neq \pi/PN$.

• Although the Li & Huang model generates uncorrelated faded envelopes, it does not satisfy the correlation functions of the reference model.

Zajić & Stüber Deterministic Model

• The k^{th} , $1 \le k \le P$ complex faded envelope is defined as $g_k(t) = g_{I,k}(t) + jg_{Q,k}(t)$, where

$$g_{I,k}(t) = \frac{2}{\sqrt{N}} \left[\sum_{n=0}^{M} a_n \cos(2\pi f_m t \cos \alpha_{nk} + \phi_{nk}) \right],$$
$$g_{Q,k}(t) = \frac{2}{\sqrt{N}} \left[\sum_{n=0}^{M} b_n \sin(2\pi f_m t \sin \alpha_{nk} + \phi_{nk}) \right].$$

- The phases ϕ_{nk} are chosen to be independent random variables uniformly distributed on the interval $[0, 2\pi)$
- Parameters a_n and b_n are defined as follows:

$$a_{n} = \begin{cases} 2\cos(\beta_{n}), & n = 1, ..., M\\ \sqrt{2}\cos(\beta_{n}), & n = 0 \end{cases},$$
$$b_{n} = \begin{cases} 2\sin(\beta_{n}), & n = 1, ..., M\\ \sqrt{2}\sin(\beta_{n}), & n = 0 \end{cases}.$$

- The β_n are defined as $\beta_n = \pi n/M$ for n = 0, ..., M, where N = 4M + 2.
- The angles of arrival α_{nk} are defined as $\alpha_{nk} = (2\pi n)/N + (2\pi k)/(PN) + \alpha_{00}$ for $n = 0, \ldots, M, k = 0, \ldots, P 1$, where $\alpha_{00} = (0.2\pi)/(PN)$.

Theoretical and simulated auto-correlation functions and the cross-correlation function of the first and the second complex envelope of the deterministic model.

Zajić & Stüber Statistical Model

• The k^{th} , $1 \le k \le P$ complex faded envelope is defined as $g_k(t) = g_{I,k}(t) + jg_{Q,k}(t)$, where

$$g_{I,k}(t) = \frac{2}{\sqrt{N}} \sum_{n=1}^{M} 2\cos(\beta_{nk}) \cos(2\pi f_m t \cos\alpha_{nk} + \phi_{nk}), \tag{1}$$

$$g_{Q,k}(t) = \frac{2}{\sqrt{N}} \sum_{n=1}^{M} 2\sin(\beta_{nk}) \sin(2\pi f_m t \sin\alpha_{nk} + \phi_{nk}).$$
(2)

- It is assumed that P independent complex envelopes are desired (k = 0, ..., P 1), each having M = N/4 sinusoidal terms in the I and Q components.
- The angles of arrival are chosen as follows: $\alpha_{nk} = (2\pi n)/N + (2\pi k)/(PN) + (\theta \pi)/N$, for $n = 1, \ldots, M, k = 0, \ldots, P-1$. The angles of arrival in the k^{th} complex faded envelope are obtained by rotating the angles of arrivals in the $(k-1)^{th}$ complex envelope by $(2\pi)/(PN)$.
- The parameters ϕ_{nk} , β_{nk} , and θ are independent random variables uniformly distributed on the interval $[-\pi, \pi)$.

Theoretical and simulated $(N_{stat} = 30)$ auto-correlation functions and the cross-correlation function of the in-phase and the quadrature component of the statistical model.

Theoretical and simulated $(N_{stat} = 30)$ auto-correlation functions and the cross-correlation function of the first and the second fader in the statistical model.

Wide-band Simulation Models

• A wide-band channel has the time-variant impulse response

$$g(t,\tau) = \sum_{i=1}^{\ell} g_i(t) \delta(\tau - \tau_i)$$

• The corresponding time-variant transfer function is

$$T(f,t) = \sum_{i=1}^{\ell} g_i(t) \mathrm{e}^{-j2\pi f \tau_i}$$

• Assuming a WSSUS channel, the autocorrelation function of the time-variant channel impulse response is

$$\phi_g(t,s;\tau,\eta) = \mathbf{E}[g(t,\tau)g^*(s,\eta)]$$

= $\sum_{i=1}^{\ell} \phi_{g_ig_i}(\Delta t)\delta(\tau-\tau_i)\delta(\eta-\tau)$

• It follows that the channel correlation function is

$$\psi_g(\Delta t; \tau) = \sum_{i=1}^{\ell} \phi_{g_i g_i}(\Delta t) \delta(\tau - \tau_i)$$
(3)

• The power-delay profile is

$$\psi_g(\tau) = \psi_g(0;\tau) = \sum_{i=1}^{\ell} \Omega_i \delta(\tau - \tau_i) ,$$

where $\Omega_i = \phi_{g_i g_i}(0)$ is the envelope power of the *i*th channel tap, and the total envelope power is

$$\Omega_p = \sum_{k=1}^{\ell} \Omega_k \; .$$

• The channel is described by the power profile

$$\mathbf{\Omega} = (\Omega_0, \ \Omega_1, \dots, \Omega_\ell)$$

and the delay profile

$$\boldsymbol{\tau} = (au_1, \ au_2, \dots, au_\ell)$$
.

• Power delay profiles have been specified in the COST 207 and 259 studies. Other studies exist.

Spaced-time Spaced-Frequency Correlation Function

• Taking the Fourier transform of (3) with respect to the τ variable yields the spaced-time spaced-frequency correlation function

$$\phi_T(\Delta f; \Delta t) = \sum_{i=1}^{\ell} \phi_{g_i g_i}(\Delta t) e^{-j2\pi\Delta f \tau_i}$$

• Sometimes the channel taps are assumed to have the same time correlation function, such that

$$\phi_{g_i g_i}(\Delta t) = \Omega_i \phi_t(\Delta t) , \quad i = 1, \dots, \ell$$

• If each tap is characterized by 2-D isotropic scattering then we have

$$\phi_t(\Delta t) = J_0(2\pi f_m \Delta t)$$

• In this case, the spaced-time spaced-frequency correlation function has the separable form

$$\phi_T(\Delta f; \Delta t) = \phi_t(\Delta t)\phi_f(\Delta f) ,$$

where

$$\phi_f(\Delta f) = \sum_{i=1}^{\ell} \Omega_i \mathrm{e}^{-j2\pi\Delta f\tau_i}$$

COST207 Models

• The COST207 models were developed for the GSM system. COST207 specifies four different Doppler spectra, $S_{gg}(f)$. Define

$$G(A, f_1, f_2) = A \exp\left\{-\frac{(f - f_1)^2}{2f_2^2}\right\}$$

The following types are defined;

a) CLASS is used for path delays less than 500 ns ($\tau_i \leq 500$ ns);

(CLASS)
$$S_{gg}(f) = \frac{A}{\sqrt{1 - (f/f_m)^2}} |f| \le f_m$$

b) GAUS1 is used for path delays from 500 ns to 2 μ s; (500 ns $\leq \tau_i \leq 2\mu$ s)

(GAUS1)
$$S_{gg}(f) = G(A, -0.8f_m, 0.05f_m) + G(A_1, 0.4f_m, 0.1f_m)$$

where A_1 is 10 dB below A.

c) GAUS2 is used for path delays exceeding 2 μ s; ($\tau_i > 2 \mu$ s)

(GAUS2)
$$S_{gg}(f) = G(B, 0.7f_m, 0.1f_m) + G(B_1, -0.4f_m, 0.15f_m)$$

where B_1 is 15 dB below B.

d) RICE is a sometimes used for the direct ray;

(RICE)
$$S_{gg}(f) = \frac{0.41}{2\pi f_m \sqrt{1 - (f/f_m)^2}} + 0.91\delta(f - 0.7f_m) \quad |f| \le f_m$$

Typical Urban (TU) and Bad Urban (BU) 12-ray models

Typical Urban (TU)		Bad Urban (BU)			
delay	Fractional	Doppler	delay	Fractional	Doppler
$\mu \mathrm{s}$	Power	Category	$\mu { m s}$	Power	Category
0.0	0.092	CLASS	0.0	0.033	CLASS
0.1	0.115	CLASS	0.1	0.089	CLASS
0.3	0.231	CLASS	0.3	0.141	CLASS
0.5	0.127	CLASS	0.7	0.194	GAUS1
0.8	0.115	GAUS1	1.6	0.114	GAUS1
1.1	0.074	GAUS1	2.2	0.052	GAUS2
1.3	0.046	GAUS1	3.1	0.035	GAUS2
1.7	0.074	GAUS1	5.0	0.140	GAUS2
2.3	0.051	GAUS2	6.0	0.136	GAUS2
3.1	0.032	GAUS2	7.2	0.041	GAUS2
3.2	0.018	GAUS2	8.1	0.019	GAUS2
5.0	0.025	GAUS2	10.0	0.006	GAUS2

Typical Urban (TU) and Bad Urban (BU) 12-ray models

Reduce typical Urban (RTU) and Reduced Bad Urban (RBU) 6-ray models

Typical Urban (TU)			Bad Urban (BU)		
delay	Fractional	Doppler	delay	Fractional	Doppler
$\mu \mathrm{s}$	Power	Category	$\mu { m s}$	Power	Category
0.0	0.189	CLASS	0.0	0.164	CLASS
0.2	0.379	CLASS	0.3	0.293	CLASS
0.5	0.239	CLASS	1.0	0.147	GAUS1
1.6	0.095	GAUS1	1.6	0.094	GAUS1
2.3	0.061	GAUS2	5.0	0.185	GAUS2
5.0	0.037	GAUS2	6.6	0.117	GAUS2

COST 207 typical case for rural (non-hilly) area (RA)

delay	Fractional	Doppler
$\mu { m s}$	Power	Category
0.0	0.602	RICE
0.1	0.241	CLASS
0.2	0.096	CLASS
0.3	0.036	CLASS
0.4	0.018	CLASS
0.5	0.006	CLASS

COST 207 typical case for hilly terrain (HT)

delay	Fractional	Doppler
$\mu { m s}$	Power	Category
0.0	0.026	CLASS
0.1	0.042	CLASS
0.3	0.066	CLASS
0.5	0.105	CLASS
0.7	0.263	GAUS1
1.0	0.263	GAUS1
1.3	0.105	GAUS1
15.0	0.042	GAUS2
15.2	0.034	GAUS2
15.7	0.026	GAUS2
17.2	0.016	GAUS2
20.0	0.011	GAUS2

Reduced Hilly Terrain (RHT)

delay	Fractional	Doppler
$\mu { m s}$	Power	Category
0.0	0.413	CLASS
0.1	0.293	CLASS
0.3	0.145	CLASS
0.5	0.074	CLASS
15.0	0.066	GAUS2
17.2	0.008	GAUS2

COST 259 Typical Urban (TUx) channel model; x=3, 50 and 120 km/h

delay	Fractional	Doppler
$\mu { m s}$	Power	Category
0.000	0.26915	CLASS
0.217	0.17378	CLASS
0.512	0.09772	CLASS
0.514	0.09550	CLASS
0.517	0.09550	CLASS
0.674	0.07079	CLASS
0.882	0.04571	CLASS
1.230	0.02344	CLASS
1.287	0.02042	CLASS
1.311	0.01950	CLASS
1.349	0.01820	CLASS
1.533	0.01259	CLASS
1.535	0.01259	CLASS
1.622	0.01047	CLASS
1.818	0.00708	CLASS
1.836	0.00692	CLASS
1.884	0.00617	CLASS
1.943	0.00550	CLASS
2.048	0.00447	CLASS
2.140	0.00372	CLASS

COST 259 Rural Area (RAx) channel model; x=120 and 250 km/h

delay	Fractional	Doppler
$\mu { m s}$	Power	Category
0.000	0.30200	Direct Path, $f_0 = 0.7 f_m$
0.042	0.22909	CLASS
0.101	0.14454	CLASS
0.129	0.11749	CLASS
0.149	0.10000	CLASS
0.245	0.04898	CLASS
0.312	0.02951	CLASS
0.410	0.01413	CLASS
0.469	0.00912	CLASS
0.528	0.00575	CLASS

COST 259 Hilly Terrain (HTx) channel model; x=120 km/h

delay	Fractional	Doppler
μs	Power	Category
0.000	0.43652	CLASS
0.356	0.12882	CLASS
0.441	0.09550	CLASS
0.528	0.07079	CLASS
0.546	0.06607	CLASS
0.609	0.05370	CLASS
0.625	0.05012	CLASS
0.842	0.02399	CLASS
0.916	0.01862	CLASS
0.941	0.01698	CLASS
15.000	0.01738	CLASS
16.172	0.00537	CLASS
16.492	0.00389	CLASS
16.876	0.00263	CLASS
16.882	0.00263	CLASS
16.978	0.00240	CLASS
17.615	0.00126	CLASS
17.827	0.00102	CLASS
17.849	0.00100	CLASS
18.016	0.00085	CLASS

Baud-Spaced Channel Models

- Wideband channel models usually have a delay profile where the delays, τ_i , not related to the modulated symbol duration T. However, time domain simulation models typically have a simulation step size, T_s , that is related to the symbol duration, i.e., $T_s = T/2^k$ for some integer k. Typically, k = 4, 8, 16.
- We need a T_s -spaced channel model.
- Consider the method below showing the generation of a *T*-spaced channel model.

Method for generating correlated tap coefficients in a T-spaced channel model.

- The pulse generator produces pulses p(t) having a shape that is determined by the combination of the transmitter and receiver filter, e.g., a raised cosine pulse.
- The pulse is passed through a τ -spaced channel having ℓ taps, T-spaced samples are taken at the output. The T-spaced samples are a linear combination of the set of ℓ channel gains $\{g_k(t)\}$ in the τ -spaced model.

Raised cosine and root raised cosine pulses with roll-off factor $\beta = 0.5$. The pulses are truncated to length 6T and time shifted by 3T to yield causal pulses.

Generation T-spaced taps from a τ -spaced model.

• A vector of M, T-spaced, time variant tap coefficients can be generated in this manner

$$\mathbf{g}_T(t) = (g_{T_1}(t), g_{T_2}(t), \dots, g_{T_M}(t))^T$$

– Even for small ℓ , the value of M can be surprisingly large.

– Length M depends on lengths of the channel $g(t, \tau)$ and the pulse p(t).

• We can write

$$\mathbf{g}_T(t) = \mathbf{A}\mathbf{g}(t)$$

where

$$\mathbf{g}(t) = (g_1(t), g_2(t), \dots, g_\ell(t))^T$$

and **A** is an $M \times \ell$ real matrix, and \mathbf{x}^T denotes the transpose of \mathbf{x} .

- Entries of the matrix **A** depend on the pulse p(t), and the (*T*-spaced) sampler timing phase.
- $-\mathbf{A}$ needs to be recalculated whenever the sampler timing phase is re-estimated.
- Sampler timing phase is usually re-estimated for every burst.

• The covariance matrix of the T-spaced tap gain vector $\mathbf{g}_T(t)$ is

$$\Phi_{\mathbf{g}_T}(\tau) = \frac{1}{2} \mathbf{E} \left[\mathbf{g}_T(t+\tau) \mathbf{g}_T^H(t) \right]$$

= $\frac{1}{2} \mathbf{E} \left[\mathbf{A} \mathbf{g}(t+\tau) \mathbf{g}^H(t) \mathbf{A}^T \right]$
= $\mathbf{A} \Phi_{\mathbf{g}}(\tau) \mathbf{A}^T$.

• For a WSSUS τ -spaced channel with 2-D isotropic scattering

$$\Phi_{\mathbf{g}_T}(\tau) = \frac{1}{2} \mathbf{A} \mathbf{\Omega} \mathbf{A}^T J_0(2\pi f_m \tau)$$

where

$$\mathbf{\Omega} \triangleq \operatorname{diag}[\Omega_0, \ \Omega_1, \ldots, \ \Omega_\ell]$$

is an $\ell \times \ell$ diagonal matrix, and $\Omega_k = \mathbb{E}[|g_k(t)|^2]$ is the envelope power that is associated with the kth tap in the τ -spaced channel.

 This applies to COST207 and COST259 models where the channel taps have a CLASSI-CAL Doppler spectrum.

• Suppose that

$$p(t) = \operatorname{Sa}(\pi t/T) \cdot \frac{\cos(\pi \beta t/T)}{1 - 4\beta^2 t^2/T^2}$$

where $\beta = 0.35$.

- The τ -spaced waveform channel is characterized by two equal strength taps $(|g_1(t)|^2 = |g_2(t)|^2)$ with a differential delay of $\tau = |\tau_1(t) \tau_0(t)|$.
- We wish to generate a 2-tap T-spaced channel model with taps $g_{T_1}(t)$ and $g_{T_2}(t)$, under the condition that $\tau = T/4$.
- Let

$$\begin{aligned} \mathbf{g}(t) &= (g_1(t), g_2(t))^T \\ \mathbf{g}_T(t) &= (g_{T_1}(t), g_{T_2}(t))^T \end{aligned}$$

and

$$\mathbf{g}_T(t) = \mathbf{A}\mathbf{g}(t)$$

• The matrix **A** depends on the timing phase of the *T*-spaced samples taken at the output of the pulse generator. In a practical system, the sampler timing phase is determined by the synchronization process in the receiver.

• Sampler timing phase can be performed by maximizing sum energy

$$E_{\tau} = \sum_{k=1}^{M} |g_{T_k}(t)|^2$$

- Suppose that the sampler timing phase is chosen such that $|g_{T_1}(t)|^2 = |g_{T_2}(t)|^2$.
 - This is optimal since $|g_0(t)|^2 = |g_1(t)|^2$ in the τ -spaced channel for this example.
- The entries of matrix **A** can be obtained by writing (refer to following slide)

$$g_{0T}(t) = g_0(t)p(\tau/2 - T/2) + g_1(t)p(-\tau/2 - T/2)$$

$$g_{1T}(t) = g_0(t)p(\tau/2 + T/2) + g_1(t)p(-\tau/2 + T/2)$$

Hence,

$$\mathbf{A} = \begin{bmatrix} p(\tau/2 - T/2) & p(-\tau/2 - T/2) \\ p(\tau/2 + T/2) & p(-\tau/2 + T/2) \end{bmatrix}$$

For $\tau = T/4$ and $\beta = 0.35$

$$\mathbf{A} = \begin{bmatrix} p(-3T/8) & p(-5T/8) \\ p(5T/8) & p(3T/8) \end{bmatrix} = \begin{bmatrix} 0.7717 & 0.4498 \\ 0.4498 & 0.7717 \end{bmatrix}$$

Generation T-spaced taps from a τ -spaced model.