
EE6604

Personal & Mobile Communications

Weeks 9 & 10

Modulation Techniques

1



Modulation for Wireless Systems

• To achieve high spectral efficiency, power- and bandwidth-efficient modulation techniques are

used that have the following properties:

– Compact Power Density Spectrum: To minimize the effect of adjacent channel

interference, the power radiated into the adjacent band is often limited to be 60 to 80 dB

below that in the desired band. This requires modulation techniques having a power

spectrum characterized by a narrow main lobe and fast roll-off of side-lobes.

– Robust Communication: Reliable communication must be achieved in the presence

of delay and Doppler spread, adjacent and co-channel interference, and thermal noise.

Modulation schemes that promote good power and bandwidth efficiency in the presence

of channel impairments are desirable.

– Envelope Properties: Power amplifier non-linearities will degrade the performance of

modulation schemes that transmit information in the amplitude of the carrier and/or have

a non-constant envelope. To prevent the regrowth of spectral side-lobes with non-linear

amplification, modulation schemes having a relatively constant envelope are desirable.

However, modulation schemes having a higher peak-to-average power ratio (PAPR) are

generally more spectrally efficient. Linearized power amplifiers may be required with high

PAPR waveforms.
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Three Representations of Bandpass Signals

• Let s(t) be a bandpass waveform. This is a waveform whose frequency content occupies a

narrow range of frequency about a carrier frequency fc. Let s̃(t) be its complex envelope.

• The complex envelope representation of a bandpass signal is

s(t) = Re
{

s̃(t)ej2πfct
}

• Writing s̃(t) = s̃I(t) + js̃Q(t), gives the quadrature respresentation of a bandpass signal

s(t) = s̃I(t) cos 2πfct− s̃Q(t) sin 2πfct

• Finally, the amplitude-phase representation of a bandpass signal is

s(t) = a(t) cos(2πfct + φ(t))

where

a(t) =
√

s̃2I(t) + s̃2Q(t)

φ(t) = Tan−1







s̃Q(t)

s̃I(t)





 .
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Generalized Representation of Modulated Waveforms

• The complex envelope of a modulated waveform can be expressed in the generalized format

s̃(t) = A
∑

n
b(t− nT,xn)

where b(t,xn) is a generalized modulation symbol, and A is an amplitude scalar.

• In some cases,

xn = (xn, xn−1, . . . , xn−K)

where one data symbol is transmitted every T seconds, and K is the modulator memory

order.

– For example, with binary phase shift keying (BPSK) and a rectangular amplitude pulse

shaping function of duration T :

b(t,xn) = xnuT (t), xn ∈ {−1,+1}

where uT (t) = u(t)− u(t− T ) is a unit amplitude rectangular amplitude shaping pulse

of duration T , and K = 0 in this case since the BPSK modulator is memoryless.

• In other cases,

xn = (xn0, xn1, . . . , xnK−1
)

where K is the number of complex data symbols transmitted every T seconds.
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Quadrature Amplitude Modulation (QAM)

• With QAM, the bandpass signal is

s(t) = A
∑

n

{

xInha(t− nT ) cos 2πfct − xQnha(t− nT ) sin 2πfct
}

where

xIn, x
Q
n ∈ {±1,±3, . . . ,±(M̂ − 1)}

ha(t) = amplitude shaping pulse

– the index of summation “n” in the above expression is a time index.

• Every T seconds, one of the following M waveforms are transmitted

sm(t) = AxImha(t) cos 2πfct − AxQmha(t) sin 2πfct, m = 1, . . . ,M

• The data sequence {xIm} modulates the amplitude of the cosine component of the RF carrier,

whereas {xQm} modulates the amplitude of the sine component of the RF carrier.

• Since cos 2πfct and sin 2πfct are orthogonal over the duration of the amplitude shaping pulse

ha(t), hence, the name quadrature amplitude modulation.
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Vector Space Representation of Modulated Signals

• Consider a set of finite energy complex signals {s̃m(t)}M−1
m=0 .

– Let {ϕi(t)}N−1
i=0 be a set of N complete complex orthonormal basis functions, i.e.,

∫ ∞
−∞ ϕi(t)ϕ

∗
j(t)dt = δij

such that

s̃m(t) =
N−1
∑

i=0
s̃miϕi(t) , m = 1, . . . , M

where

s̃mi =
∫ ∞
−∞ s̃m(t)ϕ

∗
i (t)dt

– The complete set of basis functions {ϕi(t)}N−1
i=0 can be obtained from {s̃m(t)}M−1

m=0 using

a Gram-Schmidt orthonormalization procedure; N is the dimension of the signal space.

• The signal s̃m(t) is represented by the length-N vector

s̃m = {s̃m1, s̃m2, . . . , s̃mN
}

• Example QAM: In this case N = 1, and

s̃m(t) =
√
2Ehxmϕ0(t) , xm = xI,m + jxQ,m

ϕ0(t) =

√

√

√

√

√

A2

2Eh
ha(t) , Eh =

A2

2

∫ ∞
−∞ h2

a(t)dt
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Square QAM Constellations

• For QAM, xI,m and xQ,m take on odd integer values, i.e.,

xI,m, xQ,m ∈ {±1,±3, . . . ,±M̂ − 1}

• For a square QAM constellation, M = 2k for some even k, i.e., M = M̂ 2.

M=64

M=16

M=4

(  )tφ

2 hE2

0

Complex signal-space diagram for square QAM constellations.
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Cross QAM Constellations

• For a cross QAM constellation, M = 2k for some odd k.

M

M=128

=32

2 E2 h

(  )tφ
0

Complex signal-space diagram for cross QAM constellations.
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Gray Coding

0000 0001 0011 0010

0110011101010100

1100 1101 1111 1110

1010101110011000

Signal-space diagram for 16-QAM with Gray coding. Adjacent symbols differ in only one

bit position. Gray coding is optimal for uncoded waveforms, where no error control coding

is used. It is not optimal when error control coding is used.
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8-QAM Constellations

• The cross QAM constellation is not optimal for M = 8.

1
(  )tφ

1
(  )tφ

Alternative 8-QAM signal constellations.
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Front-end Processing
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• Optimum front-end processing for a digital signaling on an ISI channel.

– Sometimes called Forney’s approach.

• In the above diagram, waveforms representing modulated symbols are transmitted using the

amplitude shaping pulse ha(t).

• To maximize the signal-to-noise ratio at the output of the receiver (or detection) filter, the

receiver filter in theory is an analog filter that is matched to the received pulse h(t) =

ha(t)∗ g(t), i.e., the receiver filter is the matched filter h(−t), and the output of the matched

filter is sampled at symbol-spaced intervals.

– Unfortunately, if the channel g(t) is unknown, then so is h(t). Therefore, implementation

of the matched filter h(−t) is practically impossible.
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Practical Matched Filtering
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• Choose the receiver filter to be an analog filter that is matched to the transmitted pulse ha(t),

i.e., ha(−t), over-sample by a factor of 2, and process 2 samples per baud interval.

– This front end processing is optimal, similar to Forney’s receiver. Refer to Chapter 7 for

the proof.

• For sequence estimation based equalizers, such as maximum likelihood sequence estimation

(MLSE), the branch metrics will consist of 2 additive terms, one for each of the 2 samples

per modulated symbol interval.

• For symbol-by-symbol equalizers, such as a decision feedback equalizer (DFE), the feed-

forward filter can be a fractionally-spaced filter, i.e., a fractionally-spaced DFE with a T/2-

spaced feed-forward filter.

– The T/2-spaced feed-forward filter is essentially the same as the T/2-spaced noise whiten-

ing filter.
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Matched Filtering and Pulse Shaping

• To design the transmitter filter and receiver matched filter, assume an ideal channel, i.e., set

g(t) = δ(t), so that the overall pulse is

p(t) = ha(t) ∗ g(t) ∗ ha(−t)

= ha(t) ∗ ha(−t)

• Taking the Fourier transform of both sides

P (f) = Ha(f)H
∗
a(f) = |Ha(f)|2

• Hence

|Ha(f)| =
√

|P (f)|

• For many practical amplitude shaping pulses, ha(t) = ha(−t), i.e., the pulse is even in t.

• Implementation can be realized as an FIR filter.

– If Ha(f) is strictly bandlimited, the filter ha(t) is non-causal.

– The filter can be approximated as a causal filter by adding delay in the amplitude shaping

pulse ha(t) and truncating it to a finite length. For example, the time shifted pulse and

truncated pulse ha(t − 3T )u6T (t) could be implemented. An example of this is shown

later.
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Conditions for ISI-free Transmission

The Nyquist first criterion for ISI-free transmission is

pk = δk0p0 =











p0 k = 0

0 k 6= 0

That is, the overall pulse p(t) = ha(t)∗ha(−t) must have equally spaced zero crossings, separated

by the symbol interval T seconds.

Theorem: The pulse p(t) satisfies pk = δk0p0 iff

P∑(f) ∆=
1

T

∞
∑

n=−∞
P (f + n/T ) = p0

That is the folded spectrum of the pulse p(t), denoted by P∑(f), is flat in the frequency

domain.

PΣ(f)

2T 3T-3T -2T -T

1.0
p(t)

T

P(f)

-W W f0

W=1/2T

0 3/2T-1/2T 1/2T-3/2T

.......... ..........
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Nyquist Pulse Design
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Construction of pulses satisfying the (first) Nyquist criterion. PN(f) is an “ideal” Nyquist

pulse, and Po(f) is a transmittence function having skew symmetry about the Nyquist

frequency 1/2T . Any transmittence function Po(f) having skew symmetry will work.
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Raised Cosine Pulse

• The overall pulse p(t) is often chosen to be a raised cosine pulse, defined by the spectral

description:

P (f) =



























T , 0 ≤ |f | ≤ (1− β)/2T
T
2

[

1− sin πT
β

(

f − 1
2T

)]

, (1− β)/2T ≤ |f | ≤ (1 + β)/2T

0 , |f | ≥ (1 + β)/2T

• The bandwidth of the raised cosine pulse is (1 + β)/2T , where the parameter β, 0 ≤ β ≤ 1

is called the roll-off factor and controls the bandwidth expansion.

• The term “raised cosine” comes from the fact that pulse spectrum P (f) with β = 1 has a

“raised cosine” shape, i.e., with β = 1

P (f) =
T

2
[1 + cos(πfT )] , 0 ≤ |f | ≤ 1/T .

• The corresponding time domain pulse is

p(t) =
sinπt/T

πt/T

cosβπt/T

1− 4β2t2/T 2

• When β = 0, the raised cosine pulse becomes the ideal Nyquist pulse p(t) = sinc(t/T ).
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Root Raised Cosine Pulse Shaping

• The amplitude shaping pulse Ha(f) is often chosen to be the root raised cosine pulse,

defined by the spectral description:

Ha(f) =































√
T 0 ≤ |f | ≤ (1− β)/2T

√

T
2

[

1− sin πT
β

(

f − 1
2T

)]1/2
(1− β)/2T ≤ |f | ≤ (1 + β)/2T

0 |f | ≥ (1 + β)/2T

where, again, β is the roll-off factor.

• The corresponding time domain pulse is

ha(t) =



























1− β + 4β/π , t = 0

(β/
√
2) ((1 + 2/π) sin(π/4β) + (1− 2/π) cos(π/4β)) , t = ±T/4β

4β(t/T ) cos((1+β)πt/T )+sin((1−β)πt/T )
π(t/T )(1−(4βt/T )2)

, elsewhere

– The pulse ha(t) is non-causal, so the time-shifted pulse and length-L truncated pulse

ha(t− (L/2)T )uLT (t) is implemented instead.

– For β = 0, the root raised cosine pulse reduces to the ideal Nyquist pulse

ha(t) = sinc(t/T ) .
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Raised cosine and root raised cosine pulses with roll-off factor β = 0.5. The pulses are

truncated to length 6T and time shifted by 3T to yield causal pulses.
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PSK and π/4-DQPSK

• PSK: The PSK bandpass signal is

s(t) =
∑

n
ha(t− nT ) cos {2πfct + θn}

– θn = 2πxm/M , xm ∈ {0, 1, 2, . . . ,M − 1}.
– ha(t) is an amplitude shaping pulse, e.g., square-root raised cosine pulse.

• π/4-DQPSK: was used in the IS-54/136 and PDC systems.

– Let ∆θ(n) = θ(n) − θ(n − 1) be the differential carrier phase. The differential phase

is related to the quaternary data sequence {xn}, xn ∈ {±1,±3} through the mapping

(this may be different from IS-54) ∆θ(n) = xnπ/4.

• The π/4-DQPSK bandpass signal is

s(t) =
∑

n
ha(t− nT )

[

cos
(

θn−1 +
π

4
xn

)

cos 2πfct− sin
(

θn−1 +
π

4
xn

)

sin 2πfct
]

θn−1 =
π

4

n−1
∑

k=−∞
xk
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8PSK Signal-space constellation.
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Signal-space constellations for QPSK and π/4-DQPSK.
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Phaser diagram, s̃Q(t) vs. s̃I(t), for π/4-DQPSK with root raised cosine amplitude pulse

shaping; β = 0.5.
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Phaser diagram of π/4-DQPSK with raised cosine pulse, β = 0.5. The raised

cosine pulse assumes the transmit and receiver filters are square root raised

cosine pulses.
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Multi-Carrier Modulation
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Block transmission through the principle of multicarrier modulation
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Multi-Carrier Demodulation

• Optimal demodulation/detection for an AWGN channel

decision
device

decision
device

~ (  )tr

(  )tu T

....
....

....

(  )tu TNe j− 2πf t
-1

^

^

(   ) dt
iT

(i+1)T

(   ) dt
iT

(i+1)T
x k,

x k,N

0

-1

e j− 2πf t
0

xi,n =
1

T

∫ (i+1)T

iT
r̃(t) exp{−j2πfnt}dt
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Orthogonal Frequency Division Multiplexing

• The OFDM complex envelope is given by

s̃(t) = A
∑

n
b(t− nT,xn) (1)

where

b(t,xn) = uT (t)
N−1
∑

k=0
xn,ke

j 2πktT (2)

where

n = block index

k = sub-carrier index

xn = {xn,0, xn,1, . . . , xn,N−1} is the data symbol block at epoch n

N = block size, usually a power of 2

uT (t) = u(t)− u(t− T ) = unit amplitude length-T rectangular pulse

∆f = 1/T

• The subcarrier phase on sub-carrier n during block k is φn = Tan−1(xQk,n/x
I
k,n).

• The sub-carrier frequency separation of 1/T ensures that the sub-carriers are orthogonal in

time regardless of the random sub-carrier phase that is introduced by the data symbols.
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OFDM with Cyclic Extension

• A cyclic extension (or guard interval) is usually added to the OFDM waveform in (1) and

(2) to combat ISI.

– This can be a cyclic prefix, cyclic suffix, or both.

• With a cyclic suffix, the OFDM complex envelope becomes

s̃g(t) =











s̃(t), 0 ≤ t ≤ T

s̃(t− T ), T ≤ t ≤ (1 + αg)T
,

where αgT is the length of the guard interval and s̃(t) is defined in (1) and (2).

• The OFDM waveform with cyclic suffix guard interval can be rewritten in the standard form

s̃(t) = A
∑

n
b(t− nTg,xn)

where

b(t,xn) = uT (t)
N−1
∑

k=0
xn,ke

j 2πktT + uαgT (t− T )
N−1
∑

k=0
xn,ke

j
2πk(t−T )

T ,

and Tg = (1 + αg)T is the OFDM symbol period with guard interval.
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IFFT Implementation

• The OFDM complex envelope (without a cyclic guard) on the interval mT ≤ t ≤ (m+ 1)T

has the form

s̃(t) = A
N−1
∑

k=0
xm,ke

j2πk(t−mT )
T uT (t−mT )

= A
N−1
∑

k=0
xm,ke

j2πkt
NTs uT (t−mT ) , mT ≤ t ≤ (m + 1)T . (3)

• Sample the complex envelope at synchronized Ts-second intervals to yield the sequence

Xm,n = s̃(nTs) = A
N−1
∑

k=0
xm,ke

j2πkn
N , n = 0, 1, . . . , N − 1 .

– The sampled envelope sequence has duration T = NTs

– The vector Xm = {Xm,n}N−1
n=0 is the IDFT/IFFT of the vector Axm = A{xm,k}N−1

k=0 .

Contrary to conventional usage, the lower case vector Axm is used to represent the

frequency domain coefficients, while the upper case vector Xm is used to represent the

time domain coefficients.

• The OFDM modulator is just an IFFT operation followed by a pair of digital-to-analog

converters (DACs) each with clock rate Rs = 1/Ts.
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IFFT Implementation with Cyclic Guard

• In a typical OFDM transmitter each IDFT/IFFT output vector Xm = {Xm,n}N−1
n=0 is ap-

pended with a cyclic suffix to yield the vector Xg
m = {Xg

m,n}N+G−1
n=0 , where

Xg
m,n = Xm,(n)N

= A
N−1
∑

k=0
xm,ke

j2πkn
N , n = 0, 1, . . . , N +G− 1

G is the length of the guard interval in samples, and (n)N is the residue of n modulo N .

– the cyclic guard can be implemented as a cyclic prefix, cyclic suffix, or both. Here, we

consider a cyclic suffix.

• The purpose of this guard interval is to eliminate the effects of inter-symbol interference (ISI),

or interblock interference (IBI) from one OFDM symbol to the next. Any residual ISI or IBI

will cause large error floors.

• To maintain the same input data rate Rs = 1/Ts with a cyclic guard, the DACs must be

clocked with increased rate Rg
s =

N+G
N Rs, due to the insertion of the cyclic guard interval.
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Discrete-time, Continuous-time Equivalence?

• The waveform generated by using the IDFT/IFFT implementation is NOT exactly the same

as the waveform generated by (3).

• The waveform in (3) uses an amplitude shaping pulse uT (t) that is strictly time-limited to T

seconds.

– The resulting OFDM waveform is not strictly band-limited, so sampling s̃(t) in (3) at

any finite sampling rate will lead to aliasing and imperfect reconstruction.

• With the IDFT/IFFT implementation, we apply the IDFT/IFFT of the vector Axm to a

pair of balanced DACs as explained earlier.

– The perfect reconstruction filter is an ideal low pass filter with cutoff frequency 1/(2T g
s );

in the time-domain the perfect reconstruction filter has the non-causal impulse response

h(t) = sinc(t/T g
s ).

– In practice, a perfect reconstruction filter is non-realizable and a causal, finite-length,

reconstruction filter must used instead. However, such a finite-length filter will generate

a waveform s̃(t) = s̃I(t) + js̃Q(t) that is not strictly bandlimited, i.e., side-lobes will

appear in the power spectrum.

31



Orthogonal Modulation with Binary Orthogonal
Codes

• Construct a Hadamard matrix using the recursion

HM =







HM/2 HM/2

HM/2 −HM/2





 .

where H1 = [1].

• For example,

H8 =



















































+1 +1 +1 +1 +1 +1 +1 +1

+1 −1 +1 −1 +1 −1 +1 −1

+1 +1 −1 −1 +1 +1 −1 −1

+1 −1 −1 +1 +1 −1 −1 +1

+1 +1 +1 +1 −1 −1 −1 −1

+1 −1 +1 −1 −1 +1 −1 +1

+1 +1 −1 −1 −1 −1 +1 +1

+1 −1 −1 +1 −1 +1 +1 −1



















































.

• Notice that the rows of the Hadamard matrix are mutually orthogonal.
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Orthogonal Modulation with Binary Orthogonal
Codes

• A set of M equal energy orthogonal waveforms can be constructed according to

s̃m(t) = A
M
∑

k=1
hmk

hc(t− kTc) , m = 0, . . . ,M − 1

– hmk
is the kth co-ordinate in the mth row of the Hadamard matrix

– T = MTc is the symbol duration

– hc(t) is a “chip” shaping pulse

• This type of orthogonal modulation is used with CDMA cellular, e.g., IS-95A/B, cdma2000,

reverse link.

• The same waveforms can be used for synchronous CDMA multi-access. One waveform is

assigned to each user, e.g., IS-95A/B, cdma2000 forward link.
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Orthogonal Multipulse Modulation

• A more bandwidth efficient scheme can be obtained by using the rows of the Hadamard

matrix HN to define N orthogonal amplitude shaping pulses

hk(t) = A
N−1
∑

ℓ=0
hkℓhc(t− ℓTc) , k = 0, . . . , N − 1

• The block of N information symbols is transmitted in parallel by using the N orthogonal

amplitude shaping pulses.

• The transmitted complex envelope is

s̃(t) =
∑

n
b(t− nT,xn)

where

b(t,xn) =
N−1
∑

k=0
xnkhk(t)

T = NTc, and xn = (xn0, xn1, . . . , xnN−1
) is the block of N data symbols transmitted at

epoch n. With OFDM, from (2)

hk(t) = ej
2πkt
T uT (t)
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