Georgia Institute of Technology
School of Electrical and Computer Engineering

ECE6604 Personal & Mobile Communications

Final Exam

Fall 2013

Monday December 9, 2:50pm - 5:40pm

- Attempt all questions.
- All questions are of equal value.
- Open book, open notes, exam.
1) **a)** Consider the transmission of a bandpass signal having complex envelope \(\tilde{s}(t) \) on a channel such that the received complex envelope is

\[
\tilde{r}(t) = \alpha \tilde{s}(t) + \beta \tilde{s}(t - \tau_1),
\]

where \(\alpha \) and \(\beta \) are real valued.

i) (1 mark) Find the channel impulse response \(g(t, \tau) \).

ii) (2 marks) Find the channel magnitude response \(|G(t, f)| \).

iii) (2 marks) Find the channel phase response \(\angle G(t, f) \).

b) Consider the transmission of a bandpass signal having complex envelope \(\tilde{s}(t) \) on a channel such that the received complex envelope is

\[
\tilde{r}(t) = \alpha \tilde{s}(t) + \beta \tilde{s}(t) e^{j2\pi f_0 t},
\]

where \(\alpha \) and \(\beta \) are real valued.

i) (1 mark) Find the channel impulse response \(g(t, \tau) \).

ii) (2 marks) Find the channel magnitude response \(|G(t, f)| \).

iii) (2 marks) Find the channel phase response \(\angle G(t, f) \).
2) Consider the system shown in the figure below. A mobile station (MS) lies at a distance of 5 km, 10 km and 15 km from three base stations, BS\(_i\), \(i = 1, 2, 3\). BS\(_2\) is the serving base station, while BS\(_1\) and BS\(_3\) are co-channel base stations (co-channel interferers).

The propagation path loss follows the model

\[
\mu_{\Omega_p} (d) = \mu_{\Omega_p} (d_o) - 10 \beta \log_{10} (d/d_o) \quad \text{(dBm)}
\]

where \(\beta = 3.5\), and \(\mu_{\Omega_p}(d_o) = 1\) microwatt at \(d_o = 1\) km. Each radio link is affected independent log-normal shadowing with shadow standard deviation \(\sigma_{\Omega} = 8\) dB. Ignore envelope fading.

a) 5 marks: Obtain the probability density function of the total interfering power observed at the MS in decibel units.

b) 3 marks: What is the probability density function of the carrier-to-interference ratio observed at the MS in decibel units?

c) 2 marks: If the carrier-to-interference ratio must be greater than 6 dB for adequate radio link performance, what is the probability of outage?
3) A guard interval consisting of a cyclic prefix or cyclic suffix is used in OFDM systems to mitigate the effects of channel time dispersion.

a) 5 marks: Assess the cost of the cyclic prefix in terms of
i) bandwidth and/or data rate.
ii) transmitter power.

a) 5 marks: Suppose the guard interval of 500 ns is used. The data rate with 64-QAM modulation is 54 Mb/s. The power penalty due to the guard interval is to be kept less than 1 dB. What is the required value of G (constrained to an integer) and the minimum possible OFDM block size N (constrained to 2^k for some k)?
4) Consider binary, orthogonal signaling using non-coherent FSK modulation and demodulation. The probability of bit error for non-coherent FSK on an AWGN channel is

\[P_b(\gamma_b) = \frac{1}{2} e^{-\gamma_b/2} \]

where \(\gamma_b = \alpha^2 E_b/N_o \) is the received bit energy-to-noise ratio. Derive the corresponding probability of bit error for

a) 5 marks: a flat Rayleigh fading channel.

b) 5 marks: a flat Ricean fading channel. An integral expression is acceptable, but it does reduce to closed form.
5) Consider a BPSK modulated system with simple repetition code and time interleaving, such that each data bit is transmitted L times and each transmission experiences independent identically distributed (i.i.d.) Rayleigh fading. If symbol \tilde{s} is transmitted, the corresponding L correlator or matched filter outputs at the receiver are

$$\tilde{r}_k = \alpha_k \tilde{s} + \tilde{n}_k, \quad k = 1, \ldots, L$$

where \tilde{s} is the transmitted BPSK symbol chosen from the alphabet $\{\pm \sqrt{2E}\}$, the α_k are i.i.d. Rayleigh random variables, and the \tilde{n}_k are i.i.d. zero-mean complex Gaussian random variables with variance $\frac{1}{2}E[|\tilde{n}_k|^2] = N_0$.

a) 3 marks: One decoding strategy is to combine the \tilde{r}_k, $k = 1, \ldots, L$ using maximal ratio combining and then make a bit decision. What is the probability of decision error in terms of the average received bit energy-to-noise ratio, $\bar{\gamma}_b$?

b) 5 marks: Another decoding strategy is to make a hard decision as to which symbol was transmitted for each of the \tilde{r}_k, $k = 1, \ldots, L$, and then make a majority logic decision (assuming L is odd) as to which data bit was transmitted, i.e., if more of the L symbols comprising each bit are decided to be $+\sqrt{2E}$ than $-\sqrt{2E}$, then choose the data bit corresponding to symbol $+\sqrt{2E}$. What is the probability of decision error in terms of the average received bit energy-to-noise ratio, $\bar{\gamma}_b$?

c) 2 marks: Evaluate the probability of bit error in parts a) and b) when $L = 3$ and $\bar{\gamma}_b = 20$ dB.