ECE6604 SUMMARY REVIEW

- 1. Introduction
 - a. Frequency reuse and the cellular concept
 - b. Path loss
 - c. Co-channel interference
 - d. Link budget
 - e. Interference margin, shadow margin, handoff gain.
 - f. Coverage and capacity
- 2. Flat fading
 - a. Propagation mechanism
 - b. Envelope distribution
 - i. Rayleigh fading
 - ii. Rician fading
 - iii. Nakagami fading
 - c. Received envelope autocorrelation
 - d. Doppler spectrum
 - e. Isotropic and non-isotropic scattering
 - f. Space-time correlation function
 - i. At the mobile station
 - ii. At the base station
 - g. Level crossing rates and fade durations
- 3. Wideband channel models
 - a. Propagation mechanism
 - b. Transmission functions
 - c. Statistical correlation functions
 - d. Wide sense stationary uncorrelated scattering (WSSUS) channels.
 - e. Power delay profiles
- 4. Mobile-to-mobile channels
- 5. Fading simulators
 - a. IIR Filtered white noise
 - b. Sum-of-sinusoids
 - i. Clarke's model
 - ii. Jakes' Method
 - 1. Auto- and cross-correlations
 - iii. Improved deterministic and statistical model
 - c. COST207 and COST 259 models
 - d. Baud-spaced channel models
- 6. Path Loss Models
 - a. Okumura-Hata model
 - b. CCIR model
 - c. Lee's Area-to-area model
 - d. COST231-Hata model
 - e. COST231-Walfish-Ikegami LoS and NLoS model

- 7. Shadowing and Co-channel interference
 - a. Shadow distribution
 - b. Shadow simulation
 - c. Sums of log-normal random variables
 - d. Fenton-Wilkinson approximation
 - e. Outage with single and multiple log-normal interferers
 - f. Outage with Rician/multiple Rayleigh interferers
- 8. Modulation Techniques
 - a. Linear modulation QAM, QPSK, $\pi/4$ -QDPSK
 - b. Pulse shaping root raised cosine and raised cosine.
 - c. Multicarrier modulation and OFDM
 - d. Continuous phase modulation
 - i. Excess phase and tilted phase
 - ii. Phase tree, trellis and state diagrams
 - iii. CPFSK
 - iv. MSK
 - v. GMSK
 - vi. LGMSK
 - e. Orthogonal modulation with Walsh codes
 - f. Orthogonal multipulse modulation
- 9. Power Spectrum of Digitally Modulated Signals
 - a. Power spectrum of bandpass signals and their complex envelope
 - b. Continuous and discrete spectra
 - c. Effects of pulse shaping and data correlation
 - d. Power spectrum of single-carrier modulation techniques
 - e. Power spectrum of OFDM
- 10. Digital modulation on flat fading channels
 - a. coherent detector
 - i. correlation detector
 - ii. matched filter detector
 - iii. vector representation of received signals
 - b. Maximum a posteriori probability receiver
 - c. Maximum likelihood receiver
 - d. Error probability for slow flat fading channels
- 11. OFDM on AWGN and ISI Channels
 - a. OFDM cyclic guard interval and ISI
- 12. Multi-antenna techniques
 - a. Diversity and diversity combining
 - i. Maximal ratio combining
 - 1. MRC performance
 - ii. Selection and switched combining
 - 1. SC performance
 - iii. Optimal combining
 - 1. Optimal combining performance
 - b. MIMO Channels
 - i. i.i.d. Model

- ii. Kronecker Model
- iii. Weichselberger Model
- c. Alamouti's transmit diversity scheme
 - i. Performance
- d. Massive MIMO
 - i. Pilot contamination
 - ii. Reverse link performance
 - iii. Forward link performance