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Abstract—The plane-wave assumption has been used exten-
sively in array signal processing, parameter estimation, and
wireless channel modeling to simplify analysis. It is suitable
for single-input single-output and single-input multiple-output
systems, because the rank of the channel matrix is one. How-
ever, for short-range multiple-input multiple-output (MIMO)
channels with a line-of-sight (LOS) component, the plane-wave
assumption affects the rank and singular value distribution of the
MIMO channel matrix, and results in the underestimation of the
channel capacity, especially for element spacings exceeding half
a wavelength. The short-range geometry could apply to many
indoor wireless local area network applications. To avoid this
underestimation problem, the received signal phases must depend
precisely on the distances between transmit and receive antenna
elements. With this correction, the capacity of short-range LOS
MIMO channels grows steadily as the element spacing exceeds
half a wavelength, as confirmed by measurements at 5.8 GHz. In
contrast, the capacity growth with element spacing diminishes
significantly under the plane-wave assumption. Using empirical
fitting, we provide a threshold distance below which the spher-
ical-wave model is required for accurate performance estimation
in ray tracing.

Index Terms—Channel capacity, line-of-sight (LOS), mul-
tiple-input multiple-output (MIMO), plane-wave model, ray
tracing, spherical-wave model.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) transmis-
sion is an extremely spectrum-efficient technology that

uses several antennas at both ends of the communication link
[1], [2]. However, it has been revealed that some factors, such
as the richness of the multipath, the correlation of the entries
of the channel matrix, and the keyhole effect, might degrade
MIMO system performance significantly in a real environment
[3], [4]. Presence of a strong line-of-sight (LOS) component is
sometimes viewed as a degradation in the context of MIMO,
because a strong LOS is usually thought to result in a unity-rank
channel, and a unity-rank channel is incapable of supporting
multiple parallel data streams.

This paper makes several claims: 1) that a LOS MIMO
channel can be full rank and yield the highest possible capacity;
2) that the spherical-wave model is required to properly analyze
short-range MIMO; and 3) that large antenna spacing can have
a very significant and positive impact at short range. These
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claims are interrelated. The full rank, as well as the impact of
spacing, will not be evident in the analysis without modeling
the LOS with spherical waves. Furthermore, the full rank will
not be reached at some typical wireless local area network
(WLAN) ranges without larger-than-usual antenna spacing.

The work was motivated by a discrepancy involving mea-
sured data. In [5], the authors attempted to estimate the path pa-
rameters of the MIMO channel for the purpose of reconstructing
the matrix of MIMO channel gains for arbitrary array geome-
tries. The path parameters included the angles of departure and
arrival at the transmitter and receiver arrays, respectively. It was
found that the capacity of the reconstructed MIMO channels
was less than the directly measured capacity, especially for large
antenna spacing. In this paper, we show that in the short-range
scenarios of [5], a major reason for the discrepancy is incor-
rect modeling of the LOS component. Specifically, we find that
computing the phases of the channel gains based on the pre-
cise distances between transmit and receive antennas, in other
words, using the spherical-wave model instead of the plane-
wave model, is necessary to alleviate the discrepancy. Use of
the spherical-wave model for the LOS gives “richness” to even
a free-space MIMO channel.

This observation was made in [6], where particular geome-
tries were sought that could yield channel matrices with full
rank. In [7], this phenomenon was investigated by simulating
the free space and two-path channels, but only two orienta-
tions of the arrays were considered. They validated the phe-
nomenon over measured channels in a parking lot with fixed an-
tenna spacing (half-wavelength). Also using the spherical-wave
model, in [8], it was shown that the capacity was sensitive to el-
ement spacing in free-space and in Rician fading channels with
various K-factors. It was concluded that the sensitivity of the ca-
pacity to the element spacing is significantly reduced when the
K-factor is less than 10 dB [8].

In contrast to these previous works, this paper analyzes the
performance of arrays with various orientations and elevation
angles in the free-space channel and in a square room with up
to 20 reflections. In addition, we specify a distance threshold
in units of wavelength to determine whether the plane-wave
model can be used without causing significant errors. Further-
more, this paper uses a measured indoor channel to show how
the more precise LOS model narrows the gap between capaci-
ties of measured and reconstructed MIMO channels, especially
for larger element spacing. Moreover, because the LOS path
is much stronger than the multipath, and because LOS alone
can provide substantial capacity, we conclude that special care
should be taken when modeling the LOS in short-range MIMO
links, even when there is plenty of multipath.

Other authors have considered the effect of element spacing
on MIMO capacity. Increased capacity with increased element
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Fig. 1. Illustration of (a) the plane-wave model and (b) the spherical-wave
model. Tx and Rx arrays are assumed to be parallel with the horizontal (x� y)
plane. In the plane-wave model, the DOAs are the same for all elements in Rx,
while in the spherical-wave model, the DOA of each element in Rx is different
from the others.

spacing in non-LOS (NLOS) channels has been observed
in simulation of stochastic geometric models with angularly
clustered multipath [9]–[11], and in ray tracing [12]. The
improvement in these cases is attributed to the reduction in
correlation of the multipath fading across antennas [9]–[12].
Others have analyzed short-range LOS MIMO links using
ray tracing, and concluded that capacity is either insensitive
to spacing [13] or that half-wavelength spacing yields full
capacity [14]. In [13], the plane-wave model is specified, and in
[14], the LOS model is not specified. In the context of these pre-
vious works, we first note that the LOS component is unfaded,
therefore the spacing effects reported here are not because of
decorrelation of fading. Second, as shown here, the conclusions
about spacing that follow from the spherical-wave model are
different from those of [13] and [14]. Finally, in contrast to
[6], this paper considers the statistics of free-space short-range
MIMO capacities for array geometries and random relative
orientations that might be encountered in WLAN applications.
The results suggest that larger element spacing could be very
beneficial for indoor WLANs using MIMO.

The paper is organized as follows. In Section II, free-space
channels are considered, and the discrepancy between the plane-
and spherical-wave models is demonstrated for variations in
direction-of-arrival (DOA), direction-of-departure (DOD), an-
tenna spacing, and distance between transmit array (Tx) and
receive array (Rx). In Section III, we use ray-tracing to sim-
ulate the multipath phenomenon in a square room. The per-
formances of these models are compared based on a Monte
Carlo approach. In Section IV, we briefly describe our MIMO
measurement system and show the measurement results to val-
idate the importance of the spherical-wave model in the MIMO
channel modeling. A short conclusion is provided in Section V.

II. FREE SPACE CHANNEL

The plane- and spherical-wave models for a (4,4) MIMO
system are illustrated in Fig. 1. The plane-wave model assumes
that the incident signal is a plane wave, which means the DOD

(DOA ) is the same for all the elements in the
Tx (Rx). and are the azimuth angles of DOD and DOA,

respectively, while and denote the elevation angles. We
assume that both the transmit and receive arrays are parallel
with the horizontal plane, therefore . However,
when the distance between Tx and Rx is short, or the array
size is large, the waves are more appropriately considered as
spherical. When spherical waves are used, the DODs and DOAs
are different for each pair of transmit and receive antennas;
therefore, the DODs and DOAs are represented as
and , where and are the indexes of the transmit
and receive antennas. Assuming each antenna of an array is
in the far field of the antennas of the other array, and that the
antenna elements are isotropic, the channel response between
any two antennas is calculated according to the formula

(1)

where is the wavelength of the carrier, and is the distance
between the transmit and receive antenna pair. In this section, we
assume the LOS is the only path in the channel. The open-loop
capacity is calculated by [1]

SNR
(2)

where and are the numbers of antennas at the trans-
mitter and receiver sites, respectively, is the MIMO com-
plex channel matrix normalized such that its Frobenius norm
is , SNR is the average signal-to-noise ratio over the re-
ceive antennas, and stands for the complex conjugate trans-
pose of the matrix. Using the plane-wave model in free space,
the calculated capacity of the (4,4) MIMO system is
SNR b/s/Hz for an SNR of 20 dB, no matter
how the DOA, DOD, the antenna spacing, and the array ge-
ometries are changed, because the rank of the matrix is one. On
the other hand, the maximum capacity is
SNR ; this occurs when the channel ma-

trix is orthogonal with equal eigenvalues. For the (4,4) case, this
maximum is 26.6 b/s/Hz for SNR dB. In the following
subsections, we show that the maximum capacity is reached in
free space over distances typically found in WLAN applications
using the more precise spherical-wave model.

A. Azimuth Angle of DOA and DOD

Let both arrays be in the same horizontal plane
, and let the distance between the midpoints of Tx and

Rx, denoted as the T-R distance, be . The MIMO capac-
ities calculated using the spherical-wave model are shown in
Fig. 2 for various azimuth angles of DOA, DOD, and for two
values of antenna spacing. First, we observe that this capacity
varies with DOA and DOD. With the spherical-wave model, the
low-capacity values are achieved when at least one of and

are or . On the other hand, for , we find that
the maximum capacity occurs when the arrays are broadside to
each other, or when . Also, capacity increases
with antenna spacing. The maximum capacity at spacing equal
to is almost 10.1 b/s/Hz, which is 1.5 b/s/Hz larger than
that of the plane-wave model. When the spacing approaches

(not shown in the figure), the capacity achieves that of a
full-rank channel matrix, 26.63 b/s/Hz, which is 18 b/s/Hz larger
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Fig. 2. Change of MIMO capacity with DOA and DOD. The T-R distance is 100�, and the SNR is 20 dB. (a) Antenna spacing = 1�. (b) Antenna spacing = 7�.

Fig. 3. Capacity versus array size and T-R distance. The threshold distances
that determine the appropriateness of the plane-wave model.

than the capacity of the plane-wave model. When the spacing is
less than , the maximum capacity corresponds to the angles

. When the spacing exceeds , the max-
imum is no longer at , as shown in Fig. 2(b), but the rip-
ples still reach the maximum capacity. The distribution of the
capacity is symmetric about the point .

A distance threshold that determines when the spherical-wave
model should be used can be determined empirically. We iden-
tify the threshold distance , below which the capacity of the
spherical-wave model is greater than 1.5 times the plane-wave
model for a given array size. In other words, the capacity un-
derestimation error is 50% at this distance when the plane-wave
model is used, and this error increases dramatically when the
T-R distance is shorter than . From the above discussion, we
have realized that the maximum discrepancy between the plane-
and spherical-wave models usually corresponds to the arrays
being broadside to each other. Therefore, this is the geometry
considered next. As shown in Fig. 3, for the array sizes , ,
and , the corresponding threshold distances are , ,
and , respectively, in the simulation when the number of
antennas is four. The relationship that fits this data is

, where is the array size in units of wavelength. Given the
formula , the value of ranges from 3.75 to 4.4 for
the number of antennas ranging between 3 and 16. Therefore,

is a reasonable threshold distance.

It is interesting to note that this threshold distance to distin-
guish the plane- and spherical-wave models is similar to the
threshold , which marks the boundary between the
Fresnel and the Fraunhofer (far-field) zone, where denotes
the antenna size in this case [15]. This threshold is determined
under the constraint that the maximum phase deviation of the
received signal between any two points of the antenna is less
than [15].

The formula for the threshold distance, , may be
generalized by considering a conventional beamforming per-
spective. The basic idea is that the channel rank will exceed
unity when any pair of elements in one of the arrays can be
resolved by the other array. Below, we will use the outer two
elements. The resolving capability of an array relates to the
beamwidth of its antenna pattern with all-unity weights. The
beamwidth of a uniformly weighted array is the same as that of a
uniformly illuminated continuous aperture of the same size [16].
Therefore, the resolving capability of an array depends only on
its aperture size, and not on how many antenna elements fill the
aperture.

The normalized broadside radiation pattern of a line source
of length (in units of wavelength) is [16]

(3)

Assuming the transmit array size is , the half-power
beamwidth of the transmit array is

(4)

The T-R distance , such that the receive array with array
size is entirely within the 3 dB beamwidth, satisfies

(5)

This distance, denoted as , is less than the empir-
ical threshold distance . This tells us that the half-power
beamwidth is too large to determine the threshold distance,
because the underestimation of channel capacity is over 100%
at .

The beamwidth that matches is

(6)
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Fig. 4. How rotation of arrays and longer range affects the subtended angle
�� .

Therefore, the threshold distance is that distance such
that the receive array subtends the angle , which is the
0.225 dB-down beamwidth of the transmit array. The formula
can be generalized to the situation when the transmit and receive
array sizes are not equal, i.e.,

(7)

This formula can be further generalized to apply to arrays that
are not broadside to each other. We observe that a beam from
a uniformly illuminated aperture of length (wavelengths),
scanned to an angle from boresight (i.e., from the broadside
direction), has a 3-dB beamwidth [16]. This
is equivalent to substituting in (4) with the effective aperture
size presented to the direction . The transmitter
effective aperture size is illustrated in Fig. 4 by the length of the
array of dashed circles at the transmitter end.

Similarly, a linear receive array which is rotated an angle
away from the broadside orientation subtends a smaller angle

, as viewed from the transmit array, and is therefore more
likely to fall within the threshold angle. Therefore, (7) may be
further generalized to

(8)

For example, when two arrays are perpendicular to each other,
or when they are at the endfire side of each other, the distance

is equal to 0, because at least one of the DOAs or DODs
is equal to 90 . In that case, the plane-wave model is appro-
priate for any distance, and the channel capacity achieves the
minimum value. Finally, Fig. 4 shows how the longer range of
the lower drawing causes to be smaller than of the
upper drawing, which shows why the plane-wave model is ap-
propriate for long range.

Although not tested specifically in this paper, nonlinear arrays
are conjectured to have the same threshold distance as (7), with

and replaced by the effective aperture lengths of the
transmit and receive arrays as presented to the directions of each
other.

Next, we consider the minimum element spacing to achieve
the maximum capacity in the context of beams [17]. With an

-element uniform linear array (ULA), in total, orthogonal

beams can be formed, and the directions of the beams ,
, satisfy

(9)

where is the element spacing in the unit of wavelength [16].
Each beam has its peak gain where the gains of other beams
are equal to 0. Therefore, if receive antennas are placed, re-
spectively, in the directions of the orthogonal beams formed by
the transmit array, the channel matrix is close to , where is
the identity matrix [17]. Assuming the element spacings of the
transmit array and the receive arrays are and in units of
wavelength, respectively, and assuming each receive antenna is
placed in the direction of a different orthogonal beam, we have

(10)

When , the receive element spacing
can be approximated by

(11)

For example, when , , and , the
minimum receive element spacing to achieve the full rank is ,
which is consistent with our previous simulation result.

When MIMO is applied to the indoor WLAN using four an-
tennas with the center frequency at 5.8 GHz, the threshold dis-
tances are around 1.86, 7, and 16.8 m for the antenna spacings
of , , and , respectively. This indicates that the spher-
ical-wave model should be used, and antenna spacings in excess
of should be considered for MIMO in indoor WLAN appli-
cations where the client platform, such as a laptop computer or
flat-panel TV, might support larger element spacings.

B. Elevation Angle

Since MIMO capacity depends on the differences among the
DOAs and the differences among the DODs for different ele-
ments, the performance can be affected by changing the ele-
vation angle, which is defined as the angle between the LOS
path and axis, as shown in Fig. 1. For example, when the ar-
rays are at the endfire side of each other, i.e., the azimuth angles

and the elevation angles
(Tx and Rx on the same plane), the system has minimum

capacity. As the elevation angle grows from this point, the rel-
ative geometry between the arrays is the same as though both
arrays were in the same horizontal plane, and the azimuth an-
gles were following the line in Fig. 2. This implies
that increasing the elevation angle corresponds to an increase in
capacity.

The previous azimuth variations do not capture relative twists
between the arrays. Fig. 5 shows the capacity when
(i.e., when one array is directly above the other) for various rel-
ative azimuth angles. In the simulation, the is fixed at 90 ,
and the varies from 90 to 90 . For all four antenna spac-
ings, the minimum channel capacity occurs at , i.e.,
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Fig. 5. Impact of elevation angle to the MIMO system with different antenna
spacing. The azimuth DOA is fixed at 0 , the T-R distance is 100�, and the SNR
is 20 dB.

Fig. 6. Average and standard deviation of MIMO capacity of different array
geometries. The distance-to-spacing ratios are 50 and 10.

when Tx and Rx arrays are orthogonal to each other. The av-
erage capacities, when the average is taken over all values of

(i.e., DOD), are 9.7, 12.5, 15.8, and 21.9 b/s/Hz for 1, 2, 3,
and 7 , respectively. Comparing these with the corresponding
average capacities of 8.6, 8.6, 8.7, and 9.9 b/s/Hz when the ele-
vation angle , the improvement ranges from 12.8% to
121.2%, increasing with antenna spacing. Since the channel ca-
pacity is dominated by the LOS when it is available, the results
suggest that the access point should be placed on the ceiling,
and element spacing should be several wavelengths to increase
the performance of the MIMO system.

C. Array Geometry

The MIMO capacity also changes with the array shape
in free space when the spherical-wave model is used. For
instance, the channel with is the
same as when the transmitter and receiver
are uniform rectangular arrays (URAs); however, these two
conditions correspond to the maximum and minimum capacity
when the ULAs are employed instead. In Fig. 6, we compare
the performance of links with different combinations, including
ULA–ULA, ULA–URA, and URA–URA. Because of the reci-
procity of the MIMO channels, the performance of URA–ULA

is the same as for ULA–URA. The SNR is 20 dB, the element
spacing is , and two ranges are considered, which yield T-R
distance-to-element-spacing ratios of 50 and 10, as indicated in
Fig. 6. The average and standard deviation of the capacity are
derived assuming the DOA and DOD are independent random
variables, and both uniformly distributed over . In
Fig. 6, the length of the vertical line on each curve represents
the standard deviation for the corresponding array arrangement
and elevation angle.

First we notice that the average capacities of the arrays
with small distance-to-spacing-ratio are higher than that of the
arrays with the larger ratio. The ULA–ULA combination has
the best average capacity for all cases, but its standard devi-
ation is also the largest. The average capacity of URA–URA
surpasses ULA–URA at most elevation angles when the dis-
tance-to-spacing ratio is 10 (i.e., for the shorter ranges). In all
cases, the capacity achieves its maximum when the elevation
angle is close to 0 . The elevation-angle effect is more
significant when the distance-to-spacing ratio is smaller. For
example, when the distance-to-spacing ratio is 10, the max-
imum variation of the average capacity is about 6 b/s/Hz for the
URA–URA system. In addition, URA–URA has the feature of
smallest variance, compared with the other two combinations.
In other words, the performance of URA–URA is more robust
to relative rotation of the arrays. Finally, we note that on the
average, element spacing improves the URA–URA channel by
about the same amount, 10 b/s/Hz, at the zero elevation, as it
does the ULA–ULA configuration.

III. CHANNELS WITH MULTIPATH

In the previous section, we considered the capacity of the
MIMO link when the LOS is the only path in the channel. How-
ever, in reality, there are multiple paths caused by the reflection,
refraction, and scattering of the objects around the antennas. In
this section, we compare the plane- and spherical-wave models
in a square room using two-dimensional (2-D) ray tracing with
the image method [18]. The reflection coefficient of the walls
can be expressed as [13], [19]

(12)

where is the relative permittivity of the wall, and is the inci-
dent angle. This formula assumes the antenna is vertically po-
larized. In the simulation, we assume and the room size
is . The SNR is 20 dB. When the frequency is 5.8
GHz, the room size is about (8 m 8 m), which is the size of a
typical office. Both Tx and Rx are four-element ULAs, and they
are located at random and in the same horizontal plane in the
room. The orientation of the array is also uniformly distributed
in azimuth over . With up to times of reflection,
the total number of reflected paths is equal to . In our
simulation, up to 20 reflections are considered, so the number of
total paths is 840. The number of trials in the simulation is 5000.
Fig. 6 shows the average capacities for normalized channel ma-
trices with the plane- and spherical-wave models. As illustrated
in Fig. 7, the discrepancy between these two models is negligible
when the antenna spacing is less than one wavelength, but the



JIANG AND INGRAM: SPHERICAL-WAVE MODEL FOR SHORT-RANGE MIMO 1539

Fig. 7. Comparison of the average capacities.

Fig. 8. Overview of MIMO channel-measurement system.

error increases with the antenna spacing. We observe the differ-
ence of the average capacity is about 3 b/s/Hz at when LOS is
not included. If the LOS is included in the simulations, bringing
the total number of paths to 841, the discrepancy increases to
6.2 b/s/Hz. In the plane-wave model, the average capacity tends
to saturate when the antenna spacing exceeds , whereas in the
spherical-wave model, the performance improves continuously
for antenna spacing up to . The antenna spacings beyond
are not considered in the simulation, because large array size re-
stricts the array locations to a very small area of the room.

IV. VALIDATION WITH MEASUREMENT

Next, we use measured data acquired in the Smart Antenna
Research Laboratory (SARL) at the Georgia Institute of Tech-
nology to compare the capacities of measured channels and
the channels reconstructed with both plane- and spherical-wave
models based on the estimated parameters. The testbed, illus-
trated in Fig. 8, is composed of two parts: 1) the 3-D actuator
system, which moves the antenna to preprogrammed locations
to form a virtual array (there are two of these systems, one at
each end of the link); and 2) the HP85301B antenna-pattern
measurement system, which captures the frequency response of
the channel. The HP85301B is a high-precision measurement
system with a dynamic range of 89 dB in our band of operation.
The details of the measurement system are provided in [5].

The measurements were taken in the main room of the SARL,
which is approximately m , and which contains desks

Fig. 9. Extraction of three different subarrays: 1) parallel ULAs; 2) orthogonal
ULAs; and 3) ULA–URA.

and 1.5 m-high partitions. The T-R distance was 2.56 m, and
the link was in the center of the open area. In the experiment,
two separate measurements were conducted; one for parameter
estimation, and the other for direct capacity measurement. In the
path parameter estimation, the arrays at both ends are
uniform cubicle arrays with antenna spacing 0.48 at 5.8 GHz.
In the sequel, always corresponds to 5.8 GHz. 401 samples
are measured from 5.55–6.05 GHz with the stepped-frequency
method to achieve the temporal resolution of 2 ns. Spatial and
frequency smoothing is achieved by averaging the correlation
matrices of the subarrays [20], [21]. The subarray size used in
the estimation is for both DOA and DOD. The
delay is estimated by unitary estimation of signal parameters
via the rotational invariance technique (ESPRIT), and the DOA
and DOD are jointly estimated by multidimensional ESPRIT
[5], [22], [23]. According to the parameter-estimation results,
the channel is dominated by the LOS component and the single-
bounce paths reflected from the walls. The power of the LOS
component is 10 dB stronger than the second-strongest path.

In the capacity measurement, the Tx array is a five-element
ULA, while the Rx array is a (5 5) URA. The measurements
with five different element spacings (0.25, 0.5, 1, 2, 3 ) are
conducted at each location. To obtain multiple outcomes for the
flat-fading capacity cumulative distribution function (CDF), the
frequency spacing is set to 10 MHz. Our measurement result
shows that with a 10-MHz separation, the correlation coefficient
between adjacent frequency samples is less than 0.4. Accord-
ingly, there are 51 samples of the flat-fading channel over the
500-MHz bandwidth. We consider that 51 different frequency
samples for the same MIMO antenna locations represent 51 ap-
proximately independent outcomes of the MIMO channel. To
get spatial samples of capacity, subarrays with different array
shapes and spacings are extracted from the five-element ULA
and (5 5) URA, as shown in Fig. 9. For different element spac-
ings, the five-element ULA and (5 5) URA are simply scaled
so that the nearest neighbors have the specified spacing. We
note that the spatial samples of the MIMO channel, especially
for the spacing, are probably correlated. With this ar-
rangement, we may extract a total of 1632 outcomes of MIMO
channel matrices when the (Tx, Rx) subarray setting is the (4,
2 2) ULA–URA combination, and 1020 outcomes when the
setting is (4,4) ULA–ULA for capacity CDF calculation. When
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Fig. 10. Measured MIMO capacity of parallel ULAs when SNR = 30 dB.

Fig. 11. Comparison of measured and estimated capacities. Difference
between the mean capacities of the directly measured and reconstructed
channels.

the array arrangement is ULA–ULA, the Tx and Rx can be ei-
ther orthogonal or parallel; accordingly, we may measure the
channel capacities of three different array geometries.

The CDFs of the directly measured capacities of the (4,4)
ULA–ULA MIMO system, with the arrays broadside to each
other for various antenna spacings, are shown in Fig. 10. We
observe that when the antenna spacing is increased from
to , the S-shaped CDFs move to the right by about 7 b/s/Hz,
corresponding to an increase in the median capacity of about
23%.

The parameters estimated from the first set of measurements
were used to reconstruct the channel matrices of various geome-
tries using both the plane- and spherical-wave models. The re-
sulting CDFs as functions of spacing have the same S-shapes
as the CDFs of the directly measured capacities, however, they
are translated horizontally to generally different positions, and
therefore, they have different mean capacities. Fig. 11 shows
the mean capacity for the directly measured channels minus
the mean capacity of the reconstructed channel as a function of
the LOS model (S for spherical or P for plane) and the array
geometries. The array geometries considered include the (4,
2 2) systems and the (4,4) MIMO systems, where the ULAs
at both ends are either parallel or orthogonal to each other. In all

cases, the difference increases with the antenna spacing when
the plane-wave model is used, while the difference is maintained
at a low level for various antenna spacings when the spher-
ical-wave model is applied. We observe that the plane-wave
model obviously underestimates the measured capacity when
the antenna spacing is or larger. When the antenna spacing
is , error in capacity resulting from use of the plane-wave
model is as large as 6 b/s/Hz. In contrast, the estimated capacity
based on the spherical-wave model has much better agreement
with the measured capacity.

V. CONCLUSIONS

In this paper, we have considered the pure LOS channel as
well as multipath channels based on ray-tracing methods and on
measurements. We have shown that when the LOS is present, the
spherical-wave model is more appropriate than the plane-wave
model for MIMO systems when the T-R distance is short or
the antenna spacing is large. A threshold distance is determined
empirically and generalized using beamspace arguments. We
also show that, unlike the plane-wave model, the spherical-wave
model enables the performance of the short-range LOS MIMO
system to be significantly improved by properly adjusting the
DOA, DOD, and the array geometries. In particular, capacity
can be dramatically improved by increasing the antenna spacing
at both ends of the link. According to the simulations, better
capacity can be achieved by placing the base station on the
ceiling, provided the LOS is available. The results suggest that
greater-than-single wavelength element spacing should be con-
sidered for nonhandheld user platforms, such as the applica-
tions of WLAN. There are several topics suggested for future
research. Those include performance of the short-range MIMO
link for wide bandwidth and when polarization variation is con-
sidered. The effects of path loss could be considered as range
varies. Finally, 3-D-multipath diffraction effects could be con-
sidered.
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