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Abstract

This article discusses downlink resource allocation atgdualing fororthogonal frequency division
multiplexing (OFDM)-based broadband wireless networks. We present ss-dager resource manage-
ment framework leveraged by utility optimization. It indes utility-based resource management and
QoS architecture, resource allocation algorithms, ratetd and delay-based multichannel scheduling
that exploits wireless channel and queue information, dmdretical exploration of the fundamental
mechanisms in wireless resource management, such astyafsioiess, and stability. We also provide
a solution that can efficiently allocate resources for logteneous traffic with diverse QoS requirements.

. INTRODUCTION

The allocation and management of resources are crucial i@ess networks, in which the scarce
wireless spectral resources are shared by multiple userthel current dominate layered networking
architecture, each layer is designed and operated indepndHowever, wireless channels suffer from
time-varying multipath fading; moreover, the statisticdlannel characteristics of different users are
different. The suboptimality and inflexibility of this arntécture result in inefficient resource use in
wireless networks. We need an integrated adaptive desigisadifferent layers.

Recently, the principles of multiuser downlink and MAC dgs have been changed from the traditional
point-to-point view to a multiuser network view. For instan channel-aware scheduling strategies are
proposed to adaptively transmit data and dynamically assigeless resources based dmannel state
information (CSI). The key idea is to choose one user with good channalittons to transmit packets
[1]. Taking advantage of the independent channel variadiomss users, channel-aware scheduling can
substantially improve the network performance througtultiuser diversity whose gain increases with
the number of users [1], [2]. From a user point of view, paslate transmitted in a stochastic way
in the system using channel-aware scheduling, which is eddled opportunistic communications [3].
Based on its concept, channel-aware dynamic packet sehgdslapplied in 1xevolution(1xEV) for
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code division multiple access 2000DMA2000) andhigh speed downlink packet accgssSPDA) for
wideband CDMA.

The growth of Internet data and multimedia applicationsuiess high-speed transmission and efficient
resource management. To avaitersymbol interferenc@Sl), orthogonal frequency division multiplexing
(OFDM) is desirable for high-speed wireless communicai@FDM-based systems are traditionally used
for combating frequency-selective fading. From a resoattmeecation point of view, however, an OFDM
system naturally has a potential for more efficiemtdian access contrdMAC) since subcarriers can
be assigned to different users [4], [5]. Another advantdg@kEDM is that adaptive power allocation can
be applied for a further performance improvement.

In this article, we present a cross-layer framework for tbevlink resource management loiternet
protocol (IP)-based OFDM wireless broadband networks that is ableffiectively enhance spectral
efficiency and guaranteguality of service(QoS) built on a utility-optimization-based architectute
this architecture, exploiting knowledge of the CSI and tharacteristics of traffic, the network aims
to maximize the total utility, which is used to capture thdissaction levels of users. This article
focuses on both developing resource allocation algorithmd exploring the fundamental mechanisms
in resource management, such as capacity, fairness, drititygtan multiuser frequency-selective fading
environments. Another contribution of this article is tovdi®p an effective solution for handling multiple
types of traffic (non-real time and real time) with diverseQ@quirements.

Il. RESOURCEMANAGEMENT IN OFDM-BASED BROADBAND WIRELESSNETWORKS

In this section, we will briefly introduce resource managetrie OFDM-based broadband networks,
including the system model, challenges and techniques aptag resource management, and related
standardization activities.

A. Adaptive Resource Allocation Techniques in OFDM-Basetivbrks

The architecture of a downlink data scheduler with multghared channels for multiple users is shown
in Figure 1. OFDM provides a physical basis for the multigiared channels, where the total bandwidth
B is divided into K subcarriers. The OFDM signaling is time-slotted, and timglle of each time slot is
Ts. The base station simultaneously serdésusers, each of which has a queue to receive its incoming
packets. LetM = {1,2,--- , M} denote the user index set. To achieve high efficiency, bethuiency
and time multiplexing are allowed in the whole resource. Shkeeduler makes a resource assignment
once at every slot.

OFDM-based networks offer more degrees of flexibility fosaerce management compared to single-
carrier networks. Taking advantage of knowledge of the G8latransmitter (base station), OFDM-based
systems can employ the following adaptive resource alimeaechniques:

« Adaptive modulation and codinAMC): the transmitter can send higher transmission rates o
the subcarriers with better conditions so as to improveutinput and simultaneously to ensure an



acceptableit-error rate (BER) at each subcarrier. Despite the use of AMC, deep fadingpme
subcarriers still leads to low channel capacity.

« Dynamic subcarrier assignmefiDSA): the base station dynamically assigns subcarriecsrding
to CSI or/fand QoS requirements. Channel characteristicglifterent users are almost mutually
independent in multiuser environments; the subcarriepeegncing deep fading for one user may
not be in a deep fade for other users; therefore, each sigrcaould be in good condition for
some users in a multiuser OFDM wireless network. Besidesjuiency multiplexing provides fine
granularity for resource allocation.

« Adaptive power allocatiofAPA): the base station allocates different power leveléniprove the
performance of OFDM-based networks, which is called mséruwater filling.

Employing these adaptive techniques at each subcarrigitse:s a large control overhead. In practice,
serval subcarriers can be grouped into a cluster (subchaimehich we apply those adaptive techniques.
The size of a cluster determines the resource granularityiddsly, the resource allocation schemes or
algorithms designed for a subcarrier-based adaptive OFWB can be directly used in a cluster-based
system.

The major issue is how to effectively assign subcarriers alhacate power on the downlink of
OFDM-based networks by exploiting knowledge of the CSI dmal ¢haracteristics of traffic to improve
spectral efficiency and guarantee diverse QoS. Three mailtealges for cross-layer design for resource
management in OFDM-based networks are present as follows:

« DSA belongs to the matching or bin packing problems in digcoptimization, which are mostly
NP-hard or NP-complete.

« Unlike a single-carrier network, a multicarrier networkncserve multiple users at the same time;
hence, the design of multicarrier scheduling for burstffirtas a new and interesting problem.

« The general relationship among spectral efficiency, faspand the stability property of wireless
scheduling are not clear for wireless networks with timeyireg fading.

All above problems are crucial for establishing high-spard efficient wireless Internet networks.

B. Standardization Activities

OFDM is already widely adopted in IEEE 802.Wreless local area network$VLANS) and the digital
audio and video broadcasting systems in Europe. Howevesetistandards do not support frequency
multiplexing for multiple access. The IEEE 802.16 standf@l] which is developed fobroadband
wireless acces¢$BWA) networks, specifies two flavors of OFDM systems: OFDM &@FDM access
(OFDMA). In the OFDMA mode, 1536 data subcarriers out of 2@4@s are equally divided into 32
subchannels, which can be assigned to different users, TH&& is an important function for improving
the efficiency of resource allocation in the OFDMA mode. Nttat the standard only specifies the
system structure to guarantee inter-operability amongtiphell vendors’ equipment and allows them
to differentiate their equipment. In summary, the IEEE 862standard supports DSA, but the details



of DSA and scheduling algorithms are left unstandardizedvéndors’ selection. Therefore, advanced
resource management and scheduling are a crucial part ¢tetndnes the spectral efficiency and the
QoS capability of equipment from different vendors.

I1l. UTILITY-BASED RESOURCEMANAGEMENT AND QOS FRAMEWORK

An effective trade-off among spectral efficiency, fairneaad QoS is desired in wireless resource
allocation. The issues on efficient and fair resource alionahave been well studied in economics,
where utility functions are used to quantify the benefit ofiges of certain resources. Similarly, utility
theory can be used in communication networks to evaluatdegese to which a network satisfies service
requirements of users’ applications, rather than in terfnsystem-centric quantities like throughput,
outage probability, packet drop rate, power, etc. [7]. Thsibd idea of utility-pricing structures is to
map the resource use (bandwidth, power, etc.) or performaniteria (data rate, delay, etc.) into the
corresponding utility or price values and optimize the lelidhed utility-pricing system. In this article,
we introduce the use of a utility-based architecture foss#ayer resource management of OFDM-based
networks.

A. Utility Functions

Representing the level of customer satisfaction receieedHe system, utility functions play a key
role in resource management and QoS differentiation. iffeapplications have different utility function
curves or even different parameters. For instance, thigyutiinctions of best-effort applications are with
respect to throughput, whereas those of delay-sensitighcations are with respect to delay. There are
usually two approaches to obtaining utility functions. Bapecific type of application, the utility function
may be obtained by sophisticated subjective surveys. Amatiethod is to design utility functions based
on the habits of the traffic and appropriate fairness in thevoik. Therefore, a utility function for an
application characterizes its corresponding QoS requrgm

B. Utility-Based Optimization Formulation

Since resource management in the downlink has a centrabdlent- the base station, we formulate the
cross-layer optimization asne that maximizes the aggregate utility in the system stitgehe capacity
limit determined by the physical-layer techniqudkte that in this formulation, the optimization con-
straints come only from the physical layer. We put other tairgts regarding QoS into the optimization
objective — utility functions through mathematical methat in light of the physical meanings of those
constraints. This formulation has two advantages:

« For a new application, we only need to change the correspgndility function and still use the

existing optimization algorithms since the optimizatidrusture is not changed.

« Because the optimization constraints determine the systgracity region, this mechanism makes

fairness, stability, and QoS tractable and even analytighich will be shown in the next section.



C. DSA and APA Algorithms

Usually, the formulated utility optimization problems cant be directly solved since most optimization
objectives are in terms of long-term performance critedehsas long-term average data rates. However,
DSA or/and APA is performed at each time slot. Thus, the naboptimization objective needs converting
into an instantaneous optimization objective that is esldb instantaneous data rates. In most cases, it is
easy to do that. Then, the instantaneous optimization tsgecan be regarded as a summation of utility
functions with respect to instantaneous data rates, wisiagtefined as)_, U;(r;[n]), wherer;[n] is the
instantaneous data rate for ugeat timen, andU;(-) is the corresponding utility function.

As mentioned before, those algorithms that maxin}iZeU; (r;[n]) serve as an important part in this
utility-based optimization architecture. However, deyghg algorithms is very challenging since the
utility functions are usually nonlinear, the DSA problenmdae regarded as a nonlinear combinatorial
optimization. Algorithm development has been carried ouf8]. The major results are summarized as
follows:

1) DSA Algorithms:If the utility functions are all linear, the utility functio of user: is given by
U;(ri[n]) = Ulr;[n], whereU] is the marginal utility function (derivative) df;(-). In this case, subcarrier
assignment is independent for different subcarriers, iwheans that the assignment of a subcarrier does
not affect assigning other subcarriers. DSA can be done bimale gradient scheduling algorithm
m(k,n) = argmax;e m{U] - ¢;[k,n]}, wherem(k,n) represents that subcarriéris assigned to user
m(k,n) at time n, and ¢;[k, n] is the achievable data rate for subcarrienat time n, which is fully
determined by the CSI at that time. For a more general saeimanihich the utility functions are nonlinear,
assigning different subcarriers is not independent angmamd DSA becomes very complicated. In the
case of concave utility functions, which are applicable tstrapplications, we have developed sorting-
search algorithm, in which sequence sorting and binarchkese mainly used. This algorithm has several
advantages. The search-sorting algorithm has no conveggmoblem since the total utility increases or
stay unchanged after each step. Furthermore, the congnahtomplexity of this algorithm is very low.

2) APA Algorithms:Theoretically, utility-based multi-level water filling the optimal solution for the
optimization with concave utility functions when continugrate AMC is used. However, since AMC
only employs several rate levels in practice, this wateinfjlicannot work in this scenario. We have
developed a greedy bit-power allocation algorithm, whishable to achieve the optimality when the
utility functions are concave. If subcarrier and power cathtbe adaptively adjusted, we can implement
the DSA and APA algorithms iteratively.

In brief, if the utility functions are concave with respeatthe instantaneous data rates, the above DSA
and APA algorithms can solve the utility-based optimizataifectively. Note that in a real system, DSA
requires much less feedback information than APA. This sabese APA requires the SNR value of each
subcarrier while DSA only needs to know the achievable date at each subcarrier. Therefore, DSA
is more practical for commercial systems. We will only disgiDSA in the following content; however,
most results are applicable to APA or joint DSA and APA.



D. Design Examples

Most network applications can be classified into two typesstieffort (non-real-time) and delay-
sensitive (real-time) traffic. Here we introduce examptasedach types of traffic.

1) Rate-Based Utility Optimization for Best-Effort TraffiErom a subject perspective, best-effort or
elastic applications have no specific QoS requirementsnFaasystem perspective, the throughput of a
best-effort connection is controlled by its transport lagecording to the level of network congestion. A
well-accepted utility function for best-effort traffic 1a(7;[n]) [9], where;[n] is the long-term average
throughput for usei. For generality, we assume useto have a concave utility functiofy;(7;[n]). It
is shown in [8] that the instantaneous optimization maxingz) ., U/(7;[n])r;[n] leads to a long-term
optimization that maximize3_, U;(7;[n]). Therefore, the gradient scheduling algorithm is

m(k,n) = arg max{U; (ri[n]) - ¢i[k, n]}. 1)

A more mathematically rigorous proof is provided in [10]ti#dugh it focuses on single-carrier systems,
the method can be extended to multicarrier systems.

2) Delay-Based Utility Optimization for Delay-Sensitivaffic: The incoming rate of a delay-sensitive
stream is usually determined by its source. Assume thatiuseassociated with an average waiting time
W;[n] and the corresponding utility i8;(1V;[n]). Obviously, with a long delay, the user has a low level of
satisfaction (utility). It is reasonable to assume thigtiV;[n]) is decreasing. The long-term optimization
objective with respect to average waiting times leads tongtantaneous optimization objective, which
is given in [11] by

/
max ;:4 1% f{;ﬁ"”“ min(r;[n], Q;_E”‘]), )
where@);[n] is the queue length of usér Themin(x,y) function is to make sure that the service bits of
each user should be less than or equal to the accumulateit liitssqueue to avoid bandwidth wastage.
The average waiting time of each user can be estimated Lyingilthe information about the queue
length and the service rate. We call this scheduMax-Delay-Utility (MDU) scheduling. Obviously, the
MDU is a joint channel- and queue-aware scheduling scheinee Sunctionmin(z, y) is concave, the
MDU scheduling needs the sorting-search algorithm as &isolu

IV. CAPACITY, FAIRNESS, STABILITY, AND QOS OF UTILITY-BASED OPTIMIZATION FRAMEWORK

To fully understand this utility-based cross-layer desmgnOFDM-based wireless networks, we discuss
capacity, fairness, stability, and QoS issue in this sactiurthermore, this study directly leads to an
effective and simple technique for QoS differentiation,iabhis also introduced in this section.

A. Capacity Region
As mentioned before, the degrees of freedom of resourceadit;n determine the long-term average
capacity. Figure 2 demonstrates how adaptive physicarlggchniques result in capacity improvement



in a two-user scenario. A fixed modulation and coding schemst monsider the worst case; as a result,
each user has the same transmission efficiency (bps/Hzysfag transmission data rates according to
users’ channel conditions, AMC significantly enlarges tiistam capacity. With AMC, different users
achieve different transmission efficiencies, but the effici ratio of two users (one user to another user)
is still constant. The combination of AMC and DSA is able tatlfier improve the capacity through
multiuser diversity [2]. In this scenario, even the effiggmatio of two users varies. Therefore, it is not
easy to handle QoS guarantees if DSA is used although DSA&dses the capacity.

B. Fairness and Rate-Based Utility Optimization

Since best-effort traffic has no specific QoS requiremeats)dss among those users sharing the same
bandwidth is one of the most important criterion. Propaordiofairness [9] provides each connection
a priority inversely proportional to its long-term averatipeoughput and lets each connection have an
equal access chance. It can be effectively used in Interastanks since it is desirable to best-effort
traffic. Using convex analysis, we have revealed the reiatip between a concave utility function with
respect to the long-term average data rate and a certairofyfa@gness in [8]. In other words, a concave
utility function is associated with its corresponding fass. Since the utility-based gradient scheduling
(1) leads to maximizing the sum of the utility functions, itettly achieves the fairness related to the
used utility function. The relationship directly shows tttthe logarithmic utility function is associated
with the proportional fairness for the utility-based optiation. The corresponding scheduling is called
proportionally fair (PF) scheduling.

C. Stability and Delay-Based Utility Optimization

Unlike best-effort traffic, a necessary condition for gudeaing the QoS requirements of a delay-
sensitive stream is that the service rate must be largerttifaimcoming rate of the stream. Therefore,
the study of stability issue is the key to analyze the perforoe of scheduling algorithms for delay-
sensitive traffic. This is because the stability issue igmtal for QoS provisioning and admission control.
Moreover, the stability issue is mathematically tractablenany cases. For a queueing system, the system
is stable if each queue length reaches a steady state andhologs to infinity. There are two important
methods to deal with the stability issue: Foster-Lyapunadit [1.2], [13] and fluid limit [14]. The Foster-
Lyapunov mothed is classical for stability and harmoniclgsia. The fluid limit technique establishes the
equivalency on stability between the orignal network arel dlssociated fluid model with deterministic
and continuous arrival streams.

The stability regionof a policy is defined as the set of all possible arrival ratetmes for which the
system is stable with the policy [12]. Note that the capaoitgion is concerned with the service data
rates, whereas the stability region is with regard to thvarrates. Thenaximum stability regio(MSR)
is defined as the largest stability region that can be actHibyesome scheduling schemes. Similarly, a
policy is called an MSR policy if the stability region of th@lgy covers all stability regions under all
other policies. Two main results made in [15] regarding th&RvViare stated as follows:



« The MSR covers any point within the long-term average capaegion.

« The MDU scheduling can guarantee the MSR when the margiildy dtinctions (with respect to
average delays) are polynomials. Actually, the condititorsthe MDU scheduling to achieve the
MSR can be further loosed [15]. In reality, polynomial delzgsed utility functions are enough to
quantify QoS in most cases.

Generally, channel-aware-only scheduling schemes camach the MSR since they are unable to
sense the queueing information, which reflects the statusetforks. Figure 3 illustrates the stability
regions of MDU and PF scheduling. It is seen from the figuré tiha MDU scheduling can fully exploit
the capacity enhanced by AMC and DSA. Note that the concemSR policy is interchangeable with
the concept of throughput-optimal policy in [14]. As a rasuhodified largest weighted delay fir@u-
LWDF) scheduling [14] is also an MSR policy. Its multichahmersion [15] is to schedule a user with
the highest value ofyo ici[k, n]/7i[n] for subcarrierk, whereTioL ; is the delay of the head-of-line
packet of usel.

D. Diverse QoS Guarantee

Guaranteeing QoS for multiple types of traffic is challemgto resource allocation and scheduling,
especially for wireless data networks. Due to a small stghiegion, channel-aware-only scheduling
such as PF scheduling is inefficient for delay-sensitivdiegions. Although MSR scheduling schemes
have the largest stability region, they may not guarantes g@oS provisioning since the MSR is only
a necessary condition for QoS guarantee. On the other haedreénd of MSR scheduling to stabilize
all connections may cause best-effort connections to agiyey occupy the bandwidth in a scenario
in which the scheduler serves both best-effort and delagisee traffic. This is because the sources
of best-effort connections may increase transmissiorsyassulting in competing more resources from
delay-sensitive connections. In addition, handling cocapéd QoS requirements is really a challenge.

In this article, we employ the MDU scheduling for a mixtured#lay-sensitive and best-effort traffic
by exploiting the powerful and flexible control capability the utility-based architecture. To apply the
MDU scheduling, we need to design utility functions with pest to average waiting times for the
corresponding QoS requirements. Since the marginalyufilinctions are proportional to the scheduling
weights, the marginal utility functions, thg!(-)’s, play a crucial role in scheduling. Therefore, we can
directly design the marginal utility functions rather thére utility functions themselves. They can be
designed based on both certain objective and subjectiferpgance criteria. The objective consideration
here is the system stability. Designing marginal utilitydtions is based on the following two rules:

« Let the marginal utility functions of delay-sensitive aijpptions satisfy the MSR conditions, which
are discussed in the previous subsection. The more spee#igrdof the marginal utility functions
is based on the subjective performance criteria of certppliGations.

« Make the marginal utility functions of best-effort applicens bounded to control the greed of their
connections. If a best-effort connection is not stable kpatsses will happen, then its transport-
layer mechanisms (such as TCP) will reduce its data rate t@®rttee connection stable again.



It follows from the design that

lim [/Jt;est effort(W) =0. (3)
W—o0 Udelay sensitivéw)

The above equation indicates that the MDU scheduling casestite level of network congestion. If the
network is congested, best-effort connections hardly inbt@sources to transmit packets according to
(3). Therefore, the MDU scheduling does not allow those-b#fstt connections to affect the stability

of delay-sensitive connections. If the network load is Itive scheduler can automatically assign more
resources to those best-effort connections.

V. SIMULATION RESULTS

In this section, we demonstrate simulation examples that tato account the impacts of different
traffic types and average SNRs on scheduling performancee Bletails are referred to [15].

A. Marginal Utility Functions

We can design the marginal utility functions according te torresponding required QoS for packet-
switched voice, streaming, and best-effort traffic, whioh shown in Figure 4. For packet-switched voice
or voice over IP(VolP), end-to-end delays are usually required less th&hm§. Good-quality streaming
transmission needs end-to-end delays between 150-400anbeBt-effort traffic, we can still assign the
marginal utility function in terms of average waiting timie. fact, the MDU scheduling for best-effort
traffic becomes the PF scheduling if average waiting timeslange.

B. Simulation Conditions

For comparison, we assume that the number of each trafficisypa even integer. For each type of
traffic, half of users, called good users, have an average &R dB; the rest, called bad users, have an
average SNR of 8 dB. In the simulation, each bad user’s chauffers multipath Rayleigh fading with
the delay profile of Channel B for outdoor to indoor and petstenvironments of International Mobile
Telecommunications-2000 (IMT-2000), and each user israeduto be stationary or slowly moving so
that the maximum Doppler shift is 10 Hz. Each good user egpeds Rician fading with a factor of
0.5 whose delay profile and Doppler shift are the same as thiobad users’ channels. In the OFDM
network, there are 256 subcarriers in a total channel battbwf 2.048 MHz. These subcarriers are
grouped into 32 clusters, each of which can be dynamicalligased to a user during a time slot. Assume
that a set of achievable transmission rates in bps/HDj$/2,1,2,3,4.

The traffic model for voice traffic is the on-off voice activitnodel with exponentially distributed
duration of voice spurts and gaps. The average talk spurtO8 4, and the average silent interval is
1.35 s. Within each talk spurt interval, a 32 kbps digitalceocoding is assumed. In the model of video
streaming, the duration of each state is exponentiallyidiged with a mean of 160 ms. The minimum,
maximum, and average data rates in each state are 64, 25d,8ankbps, respectively. A full-buffer
model in which there are infinite data packets in the queuappdied to best-effort traffic. Although this
model may not be realistic, it can obtain the maximum achikvghroughput for best-effort traffic.
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C. Simulation Results

We show two examples in the simulation and compare the padoce of the MDU scheduling and
that of the multichannel version of a combination of M-LWDRdaPF scheduling, which is called M-
LWDF-PF [15]. The performance of delay-sensitive traffi@isluated in terms of 95th percentile delay,
and that of best-effort traffic is measured in terms of averdgoughput. We focus on the properties of
the MDU scheduling at first.

1) Increase of streaming usersn this examples, we fix the numbers of voice and best-effeers
both to be 20 and increase the number of streaming users. kVelearly see the performance in both
less-congested and congested situations in Figure 5. Wigenetwork is less-congested (the number of
streaming users does not exceed 16), the MDU scheduling eamtaim high-quality delay performance
for those delay-sensitive applications and provide a higta date for the best-effort users. When the
network is congested, e.g. in the 20-streaming-user dasehtoughput for the best-effort users becomes
extremely small, and the delay for the streaming users hesmaalical increase. However, the performance
of the voice users is still very good.

2) Increase of best-effort user#n this example, we fix the numbers of voice and streamingsutser
be 20 and 10, respectively, and increase the number of Hest-esers. It is seen from Figure 6 that
as the number of the best-effort users increases, the pafare of the voice and the streaming users
remains very well with the MDU scheduling, and the througHputhe best-effort connections increases,
which results from multiuser diversity.

Therefore, we can in these two examples see the excelledtaniestns of the MDU scheduling: high
spectral efficiency by taking advantage of knowledge of C&l good diverse QoS provisioning by
exploiting utility functions. We also compare the MDU withet M-LWDF-PF in Figures 5 and 6. Note
that the M-LWDF scheduling is also a scheduling scheme thatadjust resource allocation according
to users’ channel and queue state information and has the MIiEBxamples show that both scheduling
schemes offer similar delay performance for the voice ysard that in most of the cases, the MDU
scheduling provides considerably smaller delays for siieg traffic than the M-LWDF-PF while the
MDU allows the best-effort users to achieve higher throughpan the M-LWDF-PF at the same time.
This is mainly because the MDU scheduling more appropsiataptures the required QoS compared to
other scheduling schemes. In addition, the MDU schedulimgschot need statistical information about
incoming traffic, and its implementation complexity is véoyv.

VI. CONCLUSION

In this article, we investigate resource management anedsdimg in a wireless OFDM-based downlink
that serves multiple users and supports various applitatiased on a cross-layer approach. The current
standardization activities of broadband wireless netwqgpkovide a chance for DSA and advanced
multichannel scheduling to be implemented in commerciagteays. We not only present a utility-
based cross-layer wireless resource management arangesmid corresponding scheduling algorithms
that substantially improve spectral efficiency and satiferse performance objectives of heterogeneous
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traffic, but also provide a theoretical framework that abbows to understand the fundamental mechanisms

in state-of-the-art wireless resource management, imguchpacity, fairness, and stability. Even though

much efforts are required to fully understand the theoriehild these advanced adaptive resource

management techniques, their implementation is quite Isirapd effective.
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