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Abstract

This article discusses downlink resource allocation and scheduling fororthogonal frequency division

multiplexing (OFDM)-based broadband wireless networks. We present a cross-layer resource manage-

ment framework leveraged by utility optimization. It includes utility-based resource management and

QoS architecture, resource allocation algorithms, rate-based and delay-based multichannel scheduling

that exploits wireless channel and queue information, and theoretical exploration of the fundamental

mechanisms in wireless resource management, such as capacity, fairness, and stability. We also provide

a solution that can efficiently allocate resources for heterogeneous traffic with diverse QoS requirements.

I. INTRODUCTION

The allocation and management of resources are crucial for wireless networks, in which the scarce

wireless spectral resources are shared by multiple users. In the current dominate layered networking

architecture, each layer is designed and operated independently. However, wireless channels suffer from

time-varying multipath fading; moreover, the statisticalchannel characteristics of different users are

different. The suboptimality and inflexibility of this architecture result in inefficient resource use in

wireless networks. We need an integrated adaptive design across different layers.

Recently, the principles of multiuser downlink and MAC designs have been changed from the traditional

point-to-point view to a multiuser network view. For instance, channel-aware scheduling strategies are

proposed to adaptively transmit data and dynamically assign wireless resources based onchannel state

information (CSI). The key idea is to choose one user with good channel conditions to transmit packets

[1]. Taking advantage of the independent channel variationacross users, channel-aware scheduling can

substantially improve the network performance throughmultiuser diversity, whose gain increases with

the number of users [1], [2]. From a user point of view, packets are transmitted in a stochastic way

in the system using channel-aware scheduling, which is alsocalled opportunistic communications [3].

Based on its concept, channel-aware dynamic packet scheduling is applied in 1xevolution (1xEV) for
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code division multiple access 2000(CDMA2000) andhigh speed downlink packet access(HSPDA) for

wideband CDMA.

The growth of Internet data and multimedia applications requires high-speed transmission and efficient

resource management. To avoidintersymbol interference(ISI), orthogonal frequency division multiplexing

(OFDM) is desirable for high-speed wireless communications. OFDM-based systems are traditionally used

for combating frequency-selective fading. From a resourceallocation point of view, however, an OFDM

system naturally has a potential for more efficientmedian access control(MAC) since subcarriers can

be assigned to different users [4], [5]. Another advantage of OFDM is that adaptive power allocation can

be applied for a further performance improvement.

In this article, we present a cross-layer framework for the downlink resource management ofInternet

protocol (IP)-based OFDM wireless broadband networks that is able toeffectively enhance spectral

efficiency and guaranteequality of service(QoS) built on a utility-optimization-based architecture. In

this architecture, exploiting knowledge of the CSI and the characteristics of traffic, the network aims

to maximize the total utility, which is used to capture the satisfaction levels of users. This article

focuses on both developing resource allocation algorithmsand exploring the fundamental mechanisms

in resource management, such as capacity, fairness, and stability, in multiuser frequency-selective fading

environments. Another contribution of this article is to develop an effective solution for handling multiple

types of traffic (non-real time and real time) with diverse QoS requirements.

II. RESOURCEMANAGEMENT IN OFDM-BASED BROADBAND WIRELESSNETWORKS

In this section, we will briefly introduce resource management in OFDM-based broadband networks,

including the system model, challenges and techniques of adaptive resource management, and related

standardization activities.

A. Adaptive Resource Allocation Techniques in OFDM-Based Networks

The architecture of a downlink data scheduler with multipleshared channels for multiple users is shown

in Figure 1. OFDM provides a physical basis for the multiple shared channels, where the total bandwidth

B is divided intoK subcarriers. The OFDM signaling is time-slotted, and the length of each time slot is

Ts. The base station simultaneously servesM users, each of which has a queue to receive its incoming

packets. LetM = {1, 2, · · · ,M} denote the user index set. To achieve high efficiency, both frequency

and time multiplexing are allowed in the whole resource. Thescheduler makes a resource assignment

once at every slot.

OFDM-based networks offer more degrees of flexibility for resource management compared to single-

carrier networks. Taking advantage of knowledge of the CSI at the transmitter (base station), OFDM-based

systems can employ the following adaptive resource allocation techniques:

• Adaptive modulation and coding(AMC): the transmitter can send higher transmission rates over

the subcarriers with better conditions so as to improve throughput and simultaneously to ensure an
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acceptablebit-error rate (BER) at each subcarrier. Despite the use of AMC, deep fadingat some

subcarriers still leads to low channel capacity.

• Dynamic subcarrier assignment(DSA): the base station dynamically assigns subcarriers according

to CSI or/and QoS requirements. Channel characteristics for different users are almost mutually

independent in multiuser environments; the subcarriers experiencing deep fading for one user may

not be in a deep fade for other users; therefore, each subcarrier could be in good condition for

some users in a multiuser OFDM wireless network. Besides, frequency multiplexing provides fine

granularity for resource allocation.

• Adaptive power allocation(APA): the base station allocates different power levels toimprove the

performance of OFDM-based networks, which is called multiuser water filling.

Employing these adaptive techniques at each subcarrier results in a large control overhead. In practice,

serval subcarriers can be grouped into a cluster (subchannel), in which we apply those adaptive techniques.

The size of a cluster determines the resource granularity. Obviously, the resource allocation schemes or

algorithms designed for a subcarrier-based adaptive OFDM system can be directly used in a cluster-based

system.

The major issue is how to effectively assign subcarriers andallocate power on the downlink of

OFDM-based networks by exploiting knowledge of the CSI and the characteristics of traffic to improve

spectral efficiency and guarantee diverse QoS. Three main challenges for cross-layer design for resource

management in OFDM-based networks are present as follows:

• DSA belongs to the matching or bin packing problems in discrete optimization, which are mostly

NP-hard or NP-complete.

• Unlike a single-carrier network, a multicarrier network can serve multiple users at the same time;

hence, the design of multicarrier scheduling for bursty traffic is a new and interesting problem.

• The general relationship among spectral efficiency, fairness, and the stability property of wireless

scheduling are not clear for wireless networks with time-varying fading.

All above problems are crucial for establishing high-speedand efficient wireless Internet networks.

B. Standardization Activities

OFDM is already widely adopted in IEEE 802.11wireless local area networks(WLANs) and the digital

audio and video broadcasting systems in Europe. However, these standards do not support frequency

multiplexing for multiple access. The IEEE 802.16 standard[6], which is developed forbroadband

wireless access(BWA) networks, specifies two flavors of OFDM systems: OFDM and OFDM access

(OFDMA). In the OFDMA mode, 1536 data subcarriers out of 2048ones are equally divided into 32

subchannels, which can be assigned to different users. Thus, DSA is an important function for improving

the efficiency of resource allocation in the OFDMA mode. Notethat the standard only specifies the

system structure to guarantee inter-operability among multiple vendors’ equipment and allows them

to differentiate their equipment. In summary, the IEEE 802.16 standard supports DSA, but the details
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of DSA and scheduling algorithms are left unstandardized for vendors’ selection. Therefore, advanced

resource management and scheduling are a crucial part that determines the spectral efficiency and the

QoS capability of equipment from different vendors.

III. U TILITY -BASED RESOURCEMANAGEMENT AND QOS FRAMEWORK

An effective trade-off among spectral efficiency, fairness, and QoS is desired in wireless resource

allocation. The issues on efficient and fair resource allocation have been well studied in economics,

where utility functions are used to quantify the benefit of usage of certain resources. Similarly, utility

theory can be used in communication networks to evaluate thedegree to which a network satisfies service

requirements of users’ applications, rather than in terms of system-centric quantities like throughput,

outage probability, packet drop rate, power, etc. [7]. The basic idea of utility-pricing structures is to

map the resource use (bandwidth, power, etc.) or performance criteria (data rate, delay, etc.) into the

corresponding utility or price values and optimize the established utility-pricing system. In this article,

we introduce the use of a utility-based architecture for cross-layer resource management of OFDM-based

networks.

A. Utility Functions

Representing the level of customer satisfaction received for the system, utility functions play a key

role in resource management and QoS differentiation. Different applications have different utility function

curves or even different parameters. For instance, the utility functions of best-effort applications are with

respect to throughput, whereas those of delay-sensitive applications are with respect to delay. There are

usually two approaches to obtaining utility functions. Fora specific type of application, the utility function

may be obtained by sophisticated subjective surveys. Another method is to design utility functions based

on the habits of the traffic and appropriate fairness in the network. Therefore, a utility function for an

application characterizes its corresponding QoS requirements.

B. Utility-Based Optimization Formulation

Since resource management in the downlink has a central controller – the base station, we formulate the

cross-layer optimization asone that maximizes the aggregate utility in the system subject to the capacity

limit determined by the physical-layer techniques. Note that in this formulation, the optimization con-

straints come only from the physical layer. We put other constraints regarding QoS into the optimization

objective – utility functions through mathematical methods or in light of the physical meanings of those

constraints. This formulation has two advantages:

• For a new application, we only need to change the corresponding utility function and still use the

existing optimization algorithms since the optimization structure is not changed.

• Because the optimization constraints determine the systemcapacity region, this mechanism makes

fairness, stability, and QoS tractable and even analytical, which will be shown in the next section.
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C. DSA and APA Algorithms

Usually, the formulated utility optimization problems cannot be directly solved since most optimization

objectives are in terms of long-term performance criteria such as long-term average data rates. However,

DSA or/and APA is performed at each time slot. Thus, the original optimization objective needs converting

into an instantaneous optimization objective that is related to instantaneous data rates. In most cases, it is

easy to do that. Then, the instantaneous optimization objective can be regarded as a summation of utility

functions with respect to instantaneous data rates, which is defined as
∑

i Ui(ri[n]), whereri[n] is the

instantaneous data rate for useri at timen, andUi(·) is the corresponding utility function.

As mentioned before, those algorithms that maximize
∑

i Ui(ri[n]) serve as an important part in this

utility-based optimization architecture. However, developing algorithms is very challenging since the

utility functions are usually nonlinear, the DSA problem can be regarded as a nonlinear combinatorial

optimization. Algorithm development has been carried out in [8]. The major results are summarized as

follows:

1) DSA Algorithms: If the utility functions are all linear, the utility function of useri is given by

Ui(ri[n]) = U ′
iri[n], whereU ′

i is the marginal utility function (derivative) ofUi(·). In this case, subcarrier

assignment is independent for different subcarriers, which means that the assignment of a subcarrier does

not affect assigning other subcarriers. DSA can be done by a simple gradient scheduling algorithm

m(k, n) = arg maxi∈M{U ′
i · ci[k, n]}, wherem(k, n) represents that subcarrierk is assigned to user

m(k, n) at time n, and ci[k, n] is the achievable data rate for subcarrierk at time n, which is fully

determined by the CSI at that time. For a more general scenario in which the utility functions are nonlinear,

assigning different subcarriers is not independent anymore, and DSA becomes very complicated. In the

case of concave utility functions, which are applicable to most applications, we have developed sorting-

search algorithm, in which sequence sorting and binary search are mainly used. This algorithm has several

advantages. The search-sorting algorithm has no convergence problem since the total utility increases or

stay unchanged after each step. Furthermore, the computational complexity of this algorithm is very low.

2) APA Algorithms:Theoretically, utility-based multi-level water filling isthe optimal solution for the

optimization with concave utility functions when continuous-rate AMC is used. However, since AMC

only employs several rate levels in practice, this water filling cannot work in this scenario. We have

developed a greedy bit-power allocation algorithm, which is able to achieve the optimality when the

utility functions are concave. If subcarrier and power can both be adaptively adjusted, we can implement

the DSA and APA algorithms iteratively.

In brief, if the utility functions are concave with respect to the instantaneous data rates, the above DSA

and APA algorithms can solve the utility-based optimization effectively. Note that in a real system, DSA

requires much less feedback information than APA. This is because APA requires the SNR value of each

subcarrier while DSA only needs to know the achievable data rate at each subcarrier. Therefore, DSA

is more practical for commercial systems. We will only discuss DSA in the following content; however,

most results are applicable to APA or joint DSA and APA.
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D. Design Examples

Most network applications can be classified into two types: best-effort (non-real-time) and delay-

sensitive (real-time) traffic. Here we introduce examples for each types of traffic.

1) Rate-Based Utility Optimization for Best-Effort Traffic: From a subject perspective, best-effort or

elastic applications have no specific QoS requirements. From a system perspective, the throughput of a

best-effort connection is controlled by its transport layer according to the level of network congestion. A

well-accepted utility function for best-effort traffic isln(r̄i[n]) [9], where r̄i[n] is the long-term average

throughput for useri. For generality, we assume useri to have a concave utility functionUi(r̄i[n]). It

is shown in [8] that the instantaneous optimization maximizing
∑

i U
′
i(r̄i[n])ri[n] leads to a long-term

optimization that maximizes
∑

i Ui(r̄i[n]). Therefore, the gradient scheduling algorithm is

m(k, n) = arg max
i∈M

{U ′
i(r̄i[n]) · ci[k, n]}. (1)

A more mathematically rigorous proof is provided in [10]. Although it focuses on single-carrier systems,

the method can be extended to multicarrier systems.

2) Delay-Based Utility Optimization for Delay-Sensitive Traffic: The incoming rate of a delay-sensitive

stream is usually determined by its source. Assume that useri is associated with an average waiting time

Wi[n] and the corresponding utility isUi(Wi[n]). Obviously, with a long delay, the user has a low level of

satisfaction (utility). It is reasonable to assume thatUi(Wi[n]) is decreasing. The long-term optimization

objective with respect to average waiting times leads to an instantaneous optimization objective, which

is given in [11] by

max
∑

i∈M

∣

∣U ′
i(Wi[n])

∣

∣

r̄i[n]
min(ri[n],

Qi[n]

Ts

), (2)

whereQi[n] is the queue length of useri. Themin(x, y) function is to make sure that the service bits of

each user should be less than or equal to the accumulated bitsin its queue to avoid bandwidth wastage.

The average waiting time of each user can be estimated by utilizing the information about the queue

length and the service rate. We call this schedulingMax-Delay-Utility (MDU) scheduling. Obviously, the

MDU is a joint channel- and queue-aware scheduling scheme. Since functionmin(x, y) is concave, the

MDU scheduling needs the sorting-search algorithm as a solution.

IV. CAPACITY, FAIRNESS, STABILITY , AND QOS OF UTILITY -BASED OPTIMIZATION FRAMEWORK

To fully understand this utility-based cross-layer designfor OFDM-based wireless networks, we discuss

capacity, fairness, stability, and QoS issue in this section. Furthermore, this study directly leads to an

effective and simple technique for QoS differentiation, which is also introduced in this section.

A. Capacity Region

As mentioned before, the degrees of freedom of resource allocation determine the long-term average

capacity. Figure 2 demonstrates how adaptive physical-layer techniques result in capacity improvement
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in a two-user scenario. A fixed modulation and coding scheme must consider the worst case; as a result,

each user has the same transmission efficiency (bps/Hz). Adjusting transmission data rates according to

users’ channel conditions, AMC significantly enlarges the system capacity. With AMC, different users

achieve different transmission efficiencies, but the efficiency ratio of two users (one user to another user)

is still constant. The combination of AMC and DSA is able to further improve the capacity through

multiuser diversity [2]. In this scenario, even the efficiency ratio of two users varies. Therefore, it is not

easy to handle QoS guarantees if DSA is used although DSA increases the capacity.

B. Fairness and Rate-Based Utility Optimization

Since best-effort traffic has no specific QoS requirements, fairness among those users sharing the same

bandwidth is one of the most important criterion. Proportional fairness [9] provides each connection

a priority inversely proportional to its long-term averagethroughput and lets each connection have an

equal access chance. It can be effectively used in Internet networks since it is desirable to best-effort

traffic. Using convex analysis, we have revealed the relationship between a concave utility function with

respect to the long-term average data rate and a certain typeof fairness in [8]. In other words, a concave

utility function is associated with its corresponding fairness. Since the utility-based gradient scheduling

(1) leads to maximizing the sum of the utility functions, it directly achieves the fairness related to the

used utility function. The relationship directly shows that the logarithmic utility function is associated

with the proportional fairness for the utility-based optimization. The corresponding scheduling is called

proportionally fair (PF) scheduling.

C. Stability and Delay-Based Utility Optimization

Unlike best-effort traffic, a necessary condition for guaranteeing the QoS requirements of a delay-

sensitive stream is that the service rate must be larger thanthe incoming rate of the stream. Therefore,

the study of stability issue is the key to analyze the performance of scheduling algorithms for delay-

sensitive traffic. This is because the stability issue is essential for QoS provisioning and admission control.

Moreover, the stability issue is mathematically tractablein many cases. For a queueing system, the system

is stable if each queue length reaches a steady state and doesnot go to infinity. There are two important

methods to deal with the stability issue: Foster-Lyapunov drift [12], [13] and fluid limit [14]. The Foster-

Lyapunov mothed is classical for stability and harmonic analysis. The fluid limit technique establishes the

equivalency on stability between the orignal network and the associated fluid model with deterministic

and continuous arrival streams.

The stability regionof a policy is defined as the set of all possible arrival rate vectors for which the

system is stable with the policy [12]. Note that the capacityregion is concerned with the service data

rates, whereas the stability region is with regard to the arrival rates. Themaximum stability region(MSR)

is defined as the largest stability region that can be achieved by some scheduling schemes. Similarly, a

policy is called an MSR policy if the stability region of the policy covers all stability regions under all

other policies. Two main results made in [15] regarding the MSR are stated as follows:
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• The MSR covers any point within the long-term average capacity region.

• The MDU scheduling can guarantee the MSR when the marginal utility functions (with respect to

average delays) are polynomials. Actually, the conditionsfor the MDU scheduling to achieve the

MSR can be further loosed [15]. In reality, polynomial delay-based utility functions are enough to

quantify QoS in most cases.

Generally, channel-aware-only scheduling schemes cannotreach the MSR since they are unable to

sense the queueing information, which reflects the status ofnetworks. Figure 3 illustrates the stability

regions of MDU and PF scheduling. It is seen from the figure that the MDU scheduling can fully exploit

the capacity enhanced by AMC and DSA. Note that the concept ofMSR policy is interchangeable with

the concept of throughput-optimal policy in [14]. As a result, modified largest weighted delay first(M-

LWDF) scheduling [14] is also an MSR policy. Its multichannel version [15] is to schedule a user with

the highest value ofTHOL,ici[k, n]/r̄i[n] for subcarrierk, whereTHOL,i is the delay of the head-of-line

packet of useri.

D. Diverse QoS Guarantee

Guaranteeing QoS for multiple types of traffic is challenging to resource allocation and scheduling,

especially for wireless data networks. Due to a small stability region, channel-aware-only scheduling

such as PF scheduling is inefficient for delay-sensitive applications. Although MSR scheduling schemes

have the largest stability region, they may not guarantee good QoS provisioning since the MSR is only

a necessary condition for QoS guarantee. On the other hand, the trend of MSR scheduling to stabilize

all connections may cause best-effort connections to aggressively occupy the bandwidth in a scenario

in which the scheduler serves both best-effort and delay-sensitive traffic. This is because the sources

of best-effort connections may increase transmission rates, resulting in competing more resources from

delay-sensitive connections. In addition, handling complicated QoS requirements is really a challenge.

In this article, we employ the MDU scheduling for a mixture ofdelay-sensitive and best-effort traffic

by exploiting the powerful and flexible control capability of the utility-based architecture. To apply the

MDU scheduling, we need to design utility functions with respect to average waiting times for the

corresponding QoS requirements. Since the marginal utility functions are proportional to the scheduling

weights, the marginal utility functions, theU ′
i(·)’s, play a crucial role in scheduling. Therefore, we can

directly design the marginal utility functions rather thanthe utility functions themselves. They can be

designed based on both certain objective and subjective performance criteria. The objective consideration

here is the system stability. Designing marginal utility functions is based on the following two rules:

• Let the marginal utility functions of delay-sensitive applications satisfy the MSR conditions, which

are discussed in the previous subsection. The more specific design of the marginal utility functions

is based on the subjective performance criteria of certain applications.

• Make the marginal utility functions of best-effort applications bounded to control the greed of their

connections. If a best-effort connection is not stable, packet losses will happen, then its transport-

layer mechanisms (such as TCP) will reduce its data rate to make the connection stable again.
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It follows from the design that

lim
W→∞

U ′
best effort(W )

U ′
delay sensitive(W )

= 0. (3)

The above equation indicates that the MDU scheduling can sense the level of network congestion. If the

network is congested, best-effort connections hardly obtain resources to transmit packets according to

(3). Therefore, the MDU scheduling does not allow those best-effort connections to affect the stability

of delay-sensitive connections. If the network load is low,the scheduler can automatically assign more

resources to those best-effort connections.

V. SIMULATION RESULTS

In this section, we demonstrate simulation examples that take into account the impacts of different

traffic types and average SNRs on scheduling performance. More details are referred to [15].

A. Marginal Utility Functions

We can design the marginal utility functions according to the corresponding required QoS for packet-

switched voice, streaming, and best-effort traffic, which are shown in Figure 4. For packet-switched voice

or voice over IP(VoIP), end-to-end delays are usually required less than 100 ms. Good-quality streaming

transmission needs end-to-end delays between 150-400 ms. For best-effort traffic, we can still assign the

marginal utility function in terms of average waiting time.In fact, the MDU scheduling for best-effort

traffic becomes the PF scheduling if average waiting times are large.

B. Simulation Conditions

For comparison, we assume that the number of each traffic typeis an even integer. For each type of

traffic, half of users, called good users, have an average SNRof 15 dB; the rest, called bad users, have an

average SNR of 8 dB. In the simulation, each bad user’s channel suffers multipath Rayleigh fading with

the delay profile of Channel B for outdoor to indoor and pedestrian environments of International Mobile

Telecommunications-2000 (IMT-2000), and each user is assumed to be stationary or slowly moving so

that the maximum Doppler shift is 10 Hz. Each good user experiences Rician fading with a factor of

0.5 whose delay profile and Doppler shift are the same as thoseof bad users’ channels. In the OFDM

network, there are 256 subcarriers in a total channel bandwidth of 2.048 MHz. These subcarriers are

grouped into 32 clusters, each of which can be dynamically assigned to a user during a time slot. Assume

that a set of achievable transmission rates in bps/Hz is{0,1/2,1,2,3,4}.

The traffic model for voice traffic is the on-off voice activity model with exponentially distributed

duration of voice spurts and gaps. The average talk spurt is 1.00 s, and the average silent interval is

1.35 s. Within each talk spurt interval, a 32 kbps digital voice coding is assumed. In the model of video

streaming, the duration of each state is exponentially distributed with a mean of 160 ms. The minimum,

maximum, and average data rates in each state are 64, 256, and180 kbps, respectively. A full-buffer

model in which there are infinite data packets in the queues isapplied to best-effort traffic. Although this

model may not be realistic, it can obtain the maximum achievable throughput for best-effort traffic.
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C. Simulation Results

We show two examples in the simulation and compare the performance of the MDU scheduling and

that of the multichannel version of a combination of M-LWDF and PF scheduling, which is called M-

LWDF-PF [15]. The performance of delay-sensitive traffic isevaluated in terms of 95th percentile delay,

and that of best-effort traffic is measured in terms of average throughput. We focus on the properties of

the MDU scheduling at first.

1) Increase of streaming users:In this examples, we fix the numbers of voice and best-effort users

both to be 20 and increase the number of streaming users. We can clearly see the performance in both

less-congested and congested situations in Figure 5. When the network is less-congested (the number of

streaming users does not exceed 16), the MDU scheduling can maintain high-quality delay performance

for those delay-sensitive applications and provide a high data rate for the best-effort users. When the

network is congested, e.g. in the 20-streaming-user case, the throughput for the best-effort users becomes

extremely small, and the delay for the streaming users has a dramatical increase. However, the performance

of the voice users is still very good.

2) Increase of best-effort users:In this example, we fix the numbers of voice and streaming users to

be 20 and 10, respectively, and increase the number of best-effort users. It is seen from Figure 6 that

as the number of the best-effort users increases, the performance of the voice and the streaming users

remains very well with the MDU scheduling, and the throughput for the best-effort connections increases,

which results from multiuser diversity.

Therefore, we can in these two examples see the excellent mechanisms of the MDU scheduling: high

spectral efficiency by taking advantage of knowledge of CSI and good diverse QoS provisioning by

exploiting utility functions. We also compare the MDU with the M-LWDF-PF in Figures 5 and 6. Note

that the M-LWDF scheduling is also a scheduling scheme that can adjust resource allocation according

to users’ channel and queue state information and has the MSR. All examples show that both scheduling

schemes offer similar delay performance for the voice users, and that in most of the cases, the MDU

scheduling provides considerably smaller delays for streaming traffic than the M-LWDF-PF while the

MDU allows the best-effort users to achieve higher throughput than the M-LWDF-PF at the same time.

This is mainly because the MDU scheduling more appropriately captures the required QoS compared to

other scheduling schemes. In addition, the MDU scheduling does not need statistical information about

incoming traffic, and its implementation complexity is verylow.

VI. CONCLUSION

In this article, we investigate resource management and scheduling in a wireless OFDM-based downlink

that serves multiple users and supports various applications based on a cross-layer approach. The current

standardization activities of broadband wireless networks provide a chance for DSA and advanced

multichannel scheduling to be implemented in commercial systems. We not only present a utility-

based cross-layer wireless resource management architecture and corresponding scheduling algorithms

that substantially improve spectral efficiency and satisfydiverse performance objectives of heterogeneous
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traffic, but also provide a theoretical framework that allows us to understand the fundamental mechanisms

in state-of-the-art wireless resource management, including capacity, fairness, and stability. Even though

much efforts are required to fully understand the theories behind these advanced adaptive resource

management techniques, their implementation is quite simple and effective.
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